{"title":"在单光子分辨图像传感器中测量高能带电粒子作为背景发射的光子","authors":"Guillermo Fernandez Moroni;Fernando Chierchie;Lucas Giardino;Javier Tiffenberg;Juan Estrada","doi":"10.1109/TNS.2025.3586965","DOIUrl":null,"url":null,"abstract":"This work introduces an advanced technique optimized for detecting photons generated by charged particles, leveraging Skipper charge coupled device (Skipper-CCD) image sensors. By analyzing background sources and detection efficiencies, the technique achieves strong agreement between experimental results and Cherenkov-based simulations. It also provides a robust framework for investigating secondary photon production in environments with high fluxes of ionizing particles, such as those anticipated in space-based astronomical instruments. These secondary photons present a critical challenge as background noise for next-generation single-photon resolving imagers used to study faint celestial objects. Furthermore, the method exhibits significant potential for broader applications, including exploring photon generation in various substrate materials and examining their transport through multiple interfaces.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 8","pages":"2948-2955"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of Photons Emitted by High-Energy Charged Particles as Background in Single-Photon Resolving Image Sensors\",\"authors\":\"Guillermo Fernandez Moroni;Fernando Chierchie;Lucas Giardino;Javier Tiffenberg;Juan Estrada\",\"doi\":\"10.1109/TNS.2025.3586965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces an advanced technique optimized for detecting photons generated by charged particles, leveraging Skipper charge coupled device (Skipper-CCD) image sensors. By analyzing background sources and detection efficiencies, the technique achieves strong agreement between experimental results and Cherenkov-based simulations. It also provides a robust framework for investigating secondary photon production in environments with high fluxes of ionizing particles, such as those anticipated in space-based astronomical instruments. These secondary photons present a critical challenge as background noise for next-generation single-photon resolving imagers used to study faint celestial objects. Furthermore, the method exhibits significant potential for broader applications, including exploring photon generation in various substrate materials and examining their transport through multiple interfaces.\",\"PeriodicalId\":13406,\"journal\":{\"name\":\"IEEE Transactions on Nuclear Science\",\"volume\":\"72 8\",\"pages\":\"2948-2955\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nuclear Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11080678/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11080678/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Measurement of Photons Emitted by High-Energy Charged Particles as Background in Single-Photon Resolving Image Sensors
This work introduces an advanced technique optimized for detecting photons generated by charged particles, leveraging Skipper charge coupled device (Skipper-CCD) image sensors. By analyzing background sources and detection efficiencies, the technique achieves strong agreement between experimental results and Cherenkov-based simulations. It also provides a robust framework for investigating secondary photon production in environments with high fluxes of ionizing particles, such as those anticipated in space-based astronomical instruments. These secondary photons present a critical challenge as background noise for next-generation single-photon resolving imagers used to study faint celestial objects. Furthermore, the method exhibits significant potential for broader applications, including exploring photon generation in various substrate materials and examining their transport through multiple interfaces.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.