{"title":"数字FSO前传网络的环境感知几何整形","authors":"Qiming Sun;Yejun Liu;Song Song;Yue Zhu;Xinkai Ni;Zhiwei Jiao;Lei Guo","doi":"10.1364/JOCN.562110","DOIUrl":null,"url":null,"abstract":"As one of the last-mile access network solutions, free-space optical (FSO) communication can satisfy the rapidly growing traffic demand of 6G fronthaul networks. However, outdoor FSO transmission has to confront the influence of atmospheric conditions; fog and turbulence are worth more attention. To resist the impact of fog and turbulence on the distribution of optical signal amplitudes, we propose an environment-aware geometric shaping (GS) of signal amplitudes scheme for FSO fronthaul networks with four-level pulse amplitude modulation (PAM-4). The FSO networks are aware of channel states caused by fog and turbulence through visibility and temperature sensors to avoid the need for feedback links. Based on the environment-aware channel state information, the proposed GS algorithm determines adaptively the optimal electrical signal amplitudes of PAM-4, aiming to minimize the average bit error rate (BER) under the varying channel conditions. The effects of visibility and turbulence on PAM-4 signal amplitudes are theoretically modeled and experimentally evaluated using an environmental simulation chamber. For the first time, to the best of our knowledge, we demonstrate experimentally the effectiveness of the environment-aware GS in combating the effects of visibility and turbulence on FSO transmission performance. Experimental results show that the GS algorithm can reduce the average BER by 1/3 compared to the traditional PAM-4 using uniform amplitude distribution.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"17 11","pages":"E37-E49"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environment-aware geometric shaping for digital FSO fronthaul networks\",\"authors\":\"Qiming Sun;Yejun Liu;Song Song;Yue Zhu;Xinkai Ni;Zhiwei Jiao;Lei Guo\",\"doi\":\"10.1364/JOCN.562110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the last-mile access network solutions, free-space optical (FSO) communication can satisfy the rapidly growing traffic demand of 6G fronthaul networks. However, outdoor FSO transmission has to confront the influence of atmospheric conditions; fog and turbulence are worth more attention. To resist the impact of fog and turbulence on the distribution of optical signal amplitudes, we propose an environment-aware geometric shaping (GS) of signal amplitudes scheme for FSO fronthaul networks with four-level pulse amplitude modulation (PAM-4). The FSO networks are aware of channel states caused by fog and turbulence through visibility and temperature sensors to avoid the need for feedback links. Based on the environment-aware channel state information, the proposed GS algorithm determines adaptively the optimal electrical signal amplitudes of PAM-4, aiming to minimize the average bit error rate (BER) under the varying channel conditions. The effects of visibility and turbulence on PAM-4 signal amplitudes are theoretically modeled and experimentally evaluated using an environmental simulation chamber. For the first time, to the best of our knowledge, we demonstrate experimentally the effectiveness of the environment-aware GS in combating the effects of visibility and turbulence on FSO transmission performance. Experimental results show that the GS algorithm can reduce the average BER by 1/3 compared to the traditional PAM-4 using uniform amplitude distribution.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"17 11\",\"pages\":\"E37-E49\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11128977/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11128977/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Environment-aware geometric shaping for digital FSO fronthaul networks
As one of the last-mile access network solutions, free-space optical (FSO) communication can satisfy the rapidly growing traffic demand of 6G fronthaul networks. However, outdoor FSO transmission has to confront the influence of atmospheric conditions; fog and turbulence are worth more attention. To resist the impact of fog and turbulence on the distribution of optical signal amplitudes, we propose an environment-aware geometric shaping (GS) of signal amplitudes scheme for FSO fronthaul networks with four-level pulse amplitude modulation (PAM-4). The FSO networks are aware of channel states caused by fog and turbulence through visibility and temperature sensors to avoid the need for feedback links. Based on the environment-aware channel state information, the proposed GS algorithm determines adaptively the optimal electrical signal amplitudes of PAM-4, aiming to minimize the average bit error rate (BER) under the varying channel conditions. The effects of visibility and turbulence on PAM-4 signal amplitudes are theoretically modeled and experimentally evaluated using an environmental simulation chamber. For the first time, to the best of our knowledge, we demonstrate experimentally the effectiveness of the environment-aware GS in combating the effects of visibility and turbulence on FSO transmission performance. Experimental results show that the GS algorithm can reduce the average BER by 1/3 compared to the traditional PAM-4 using uniform amplitude distribution.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.