{"title":"单片钙钛矿/硅串联太阳能电池的光管理途径","authors":"Michel G. Rocha;Emiliano R. Martins","doi":"10.1109/JPHOT.2025.3591383","DOIUrl":null,"url":null,"abstract":"Fully-textured perovskite/silicon tandem solar cells have emerged as promising candidates for next-generation photovoltaics. The optical functions of full texturing, however, are not yet fully understood. A key challenge is the requirement for perovskite layer texturing, which often leads to increased electrical losses. Here, we elucidate the distinct optical roles of front and rear textures in tandem configurations using optical simulations and use these insights to propose a new architecture that eliminates the need for perovskite surface texturing. We demonstrate that our proposed structure achieves optical results comparable to those of fully-textured devices, while its planar perovskite layer has the potential to reduce electrical losses. The high optical performance also results in higher efficiency if a texture-induced voltage loss as low as 50 mV is assumed, which is about six times lower than the loss of fully-textured devices, thus enabling higher efficiencies within a simplified design. Our results show that perovskite texturing is not essential for optimal light management, thus opening the way to combine efficient light management with high electrical performance.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 5","pages":"1-6"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11087633","citationCount":"0","resultStr":"{\"title\":\"Routes for Light Management in Monolithic Perovskite/Silicon Tandem Solar Cells\",\"authors\":\"Michel G. Rocha;Emiliano R. Martins\",\"doi\":\"10.1109/JPHOT.2025.3591383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully-textured perovskite/silicon tandem solar cells have emerged as promising candidates for next-generation photovoltaics. The optical functions of full texturing, however, are not yet fully understood. A key challenge is the requirement for perovskite layer texturing, which often leads to increased electrical losses. Here, we elucidate the distinct optical roles of front and rear textures in tandem configurations using optical simulations and use these insights to propose a new architecture that eliminates the need for perovskite surface texturing. We demonstrate that our proposed structure achieves optical results comparable to those of fully-textured devices, while its planar perovskite layer has the potential to reduce electrical losses. The high optical performance also results in higher efficiency if a texture-induced voltage loss as low as 50 mV is assumed, which is about six times lower than the loss of fully-textured devices, thus enabling higher efficiencies within a simplified design. Our results show that perovskite texturing is not essential for optimal light management, thus opening the way to combine efficient light management with high electrical performance.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 5\",\"pages\":\"1-6\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11087633\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11087633/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11087633/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Routes for Light Management in Monolithic Perovskite/Silicon Tandem Solar Cells
Fully-textured perovskite/silicon tandem solar cells have emerged as promising candidates for next-generation photovoltaics. The optical functions of full texturing, however, are not yet fully understood. A key challenge is the requirement for perovskite layer texturing, which often leads to increased electrical losses. Here, we elucidate the distinct optical roles of front and rear textures in tandem configurations using optical simulations and use these insights to propose a new architecture that eliminates the need for perovskite surface texturing. We demonstrate that our proposed structure achieves optical results comparable to those of fully-textured devices, while its planar perovskite layer has the potential to reduce electrical losses. The high optical performance also results in higher efficiency if a texture-induced voltage loss as low as 50 mV is assumed, which is about six times lower than the loss of fully-textured devices, thus enabling higher efficiencies within a simplified design. Our results show that perovskite texturing is not essential for optimal light management, thus opening the way to combine efficient light management with high electrical performance.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.