表面上的磁斯特克洛夫问题

IF 1.6 2区 数学 Q1 MATHEMATICS
Mihajlo Cekić , Anna Siffert
{"title":"表面上的磁斯特克洛夫问题","authors":"Mihajlo Cekić ,&nbsp;Anna Siffert","doi":"10.1016/j.jfa.2025.111159","DOIUrl":null,"url":null,"abstract":"<div><div>The magnetic Dirichlet-to-Neumann map encodes the voltage-to-current measurements under the influence of a magnetic field. In the case of surfaces, we provide precise spectral asymptotics expansion (up to arbitrary polynomial power) for the eigenvalues of this map. Moreover, we consider the inverse spectral problem and from the expansion we show that the spectrum of the magnetic Dirichlet-to-Neumann map, in favourable situations, uniquely determines the number and the length of boundary components, the parallel transport and the magnetic flux along boundary components. In general, we show that the situation complicates compared to the case when there is no magnetic field. For instance, there are plenty of examples where the expansion does <em>not</em> detect the number of boundary components, and this phenomenon is thoroughly studied in the paper.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111159"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Steklov problem on surfaces\",\"authors\":\"Mihajlo Cekić ,&nbsp;Anna Siffert\",\"doi\":\"10.1016/j.jfa.2025.111159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The magnetic Dirichlet-to-Neumann map encodes the voltage-to-current measurements under the influence of a magnetic field. In the case of surfaces, we provide precise spectral asymptotics expansion (up to arbitrary polynomial power) for the eigenvalues of this map. Moreover, we consider the inverse spectral problem and from the expansion we show that the spectrum of the magnetic Dirichlet-to-Neumann map, in favourable situations, uniquely determines the number and the length of boundary components, the parallel transport and the magnetic flux along boundary components. In general, we show that the situation complicates compared to the case when there is no magnetic field. For instance, there are plenty of examples where the expansion does <em>not</em> detect the number of boundary components, and this phenomenon is thoroughly studied in the paper.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 12\",\"pages\":\"Article 111159\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003416\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003416","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

磁性狄利克雷-诺伊曼图对磁场影响下的电压-电流测量进行编码。在曲面的情况下,我们为该映射的特征值提供了精确的谱渐近展开式(可达任意多项式幂)。此外,我们考虑了逆谱问题,并从展开中表明,在有利的情况下,磁狄利克雷-诺伊曼映射的谱唯一地决定了边界分量的数量和长度、沿边界分量的平行输运和磁通量。总的来说,我们表明,与没有磁场的情况相比,这种情况更加复杂。例如,有大量的例子,展开式不检测边界分量的数量,这一现象在本文中进行了深入的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic Steklov problem on surfaces
The magnetic Dirichlet-to-Neumann map encodes the voltage-to-current measurements under the influence of a magnetic field. In the case of surfaces, we provide precise spectral asymptotics expansion (up to arbitrary polynomial power) for the eigenvalues of this map. Moreover, we consider the inverse spectral problem and from the expansion we show that the spectrum of the magnetic Dirichlet-to-Neumann map, in favourable situations, uniquely determines the number and the length of boundary components, the parallel transport and the magnetic flux along boundary components. In general, we show that the situation complicates compared to the case when there is no magnetic field. For instance, there are plenty of examples where the expansion does not detect the number of boundary components, and this phenomenon is thoroughly studied in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信