有界对称域的Denjoy-Wolff定理

IF 1.6 2区 数学 Q1 MATHEMATICS
Cho-Ho Chu
{"title":"有界对称域的Denjoy-Wolff定理","authors":"Cho-Ho Chu","doi":"10.1016/j.jfa.2025.111161","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>D</em> be a bounded symmetric domain of finite rank, realised as the open unit ball of a complex Banach space, which can be infinite dimensional. Given a fixed-point free compact holomorphic map <span><math><mi>f</mi><mo>:</mo><mi>D</mi><mo>⟶</mo><mi>D</mi></math></span>, with iterates<span><span><span><math><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><munder><munder><mrow><mi>f</mi><mo>∘</mo><mo>⋯</mo><mo>∘</mo><mi>f</mi></mrow><mo>︸</mo></munder><mrow><mtext>n</mtext><mtext>-times</mtext></mrow></munder><mo>,</mo></math></span></span></span> such that the limit points of one orbit <span><math><mo>{</mo><mi>a</mi><mo>,</mo><mi>f</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>a</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>}</mo></math></span> in an <em>f</em>-invariant horoball of unit hororadius lie in the extended Shilov boundary of <em>D</em>, we show that there is a holomorphic boundary component Γ of <em>D</em>, with closure <span><math><mover><mrow><mi>Γ</mi></mrow><mo>‾</mo></mover></math></span>, such that <span><math><mi>ℓ</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>⊂</mo><mover><mrow><mi>Γ</mi></mrow><mo>‾</mo></mover></math></span> for <em>all</em> subsequential limits <span><math><mi>ℓ</mi><mo>=</mo><msub><mrow><mi>lim</mi></mrow><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><msup><mrow><mi>f</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></math></span> of <span><math><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>.</div><div>This generalises the Denjoy-Wolff theorem for a fixed-point free holomorphic self-map <em>f</em> on the disc <span><math><mi>D</mi><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi>C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo>&lt;</mo><mn>1</mn><mo>}</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111161"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Denjoy-Wolff theorem for bounded symmetric domains\",\"authors\":\"Cho-Ho Chu\",\"doi\":\"10.1016/j.jfa.2025.111161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>D</em> be a bounded symmetric domain of finite rank, realised as the open unit ball of a complex Banach space, which can be infinite dimensional. Given a fixed-point free compact holomorphic map <span><math><mi>f</mi><mo>:</mo><mi>D</mi><mo>⟶</mo><mi>D</mi></math></span>, with iterates<span><span><span><math><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><munder><munder><mrow><mi>f</mi><mo>∘</mo><mo>⋯</mo><mo>∘</mo><mi>f</mi></mrow><mo>︸</mo></munder><mrow><mtext>n</mtext><mtext>-times</mtext></mrow></munder><mo>,</mo></math></span></span></span> such that the limit points of one orbit <span><math><mo>{</mo><mi>a</mi><mo>,</mo><mi>f</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>a</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>}</mo></math></span> in an <em>f</em>-invariant horoball of unit hororadius lie in the extended Shilov boundary of <em>D</em>, we show that there is a holomorphic boundary component Γ of <em>D</em>, with closure <span><math><mover><mrow><mi>Γ</mi></mrow><mo>‾</mo></mover></math></span>, such that <span><math><mi>ℓ</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>⊂</mo><mover><mrow><mi>Γ</mi></mrow><mo>‾</mo></mover></math></span> for <em>all</em> subsequential limits <span><math><mi>ℓ</mi><mo>=</mo><msub><mrow><mi>lim</mi></mrow><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><msup><mrow><mi>f</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></math></span> of <span><math><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>.</div><div>This generalises the Denjoy-Wolff theorem for a fixed-point free holomorphic self-map <em>f</em> on the disc <span><math><mi>D</mi><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi>C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo>&lt;</mo><mn>1</mn><mo>}</mo></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 12\",\"pages\":\"Article 111161\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362500343X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500343X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设D为有限秩的有界对称定域,实现为复巴拿赫空间的开单位球,它可以是无限维的。给定一个不动点自由紧全纯映射f:D × D,迭代fn=f°⋯f︸n次,使得单位半径的f不变全纯球中的一个轨道{a,f(a),f2(a),…}的极限点位于D的扩展希洛夫边界内,我们证明了D的一个全纯边界分量Γ,具有闭包Γ,使得对于所有的子极限,∑(f) =limk→∞∑fnk (fn),∑(D) Γ。推广了圆盘D={z∈C:|z|<;1}上的不动点自由全纯自映射f的denjo - wolff定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Denjoy-Wolff theorem for bounded symmetric domains
Let D be a bounded symmetric domain of finite rank, realised as the open unit ball of a complex Banach space, which can be infinite dimensional. Given a fixed-point free compact holomorphic map f:DD, with iteratesfn=ffn-times, such that the limit points of one orbit {a,f(a),f2(a),} in an f-invariant horoball of unit hororadius lie in the extended Shilov boundary of D, we show that there is a holomorphic boundary component Γ of D, with closure Γ, such that (D)Γ for all subsequential limits =limkfnk of (fn).
This generalises the Denjoy-Wolff theorem for a fixed-point free holomorphic self-map f on the disc D={zC:|z|<1}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信