Wenhao Wang , Shengyang Feng , Xiaodong Wang , Yong Liu , Shili Han , Guoqiang Zeng
{"title":"基于氡示踪和人工神经网络的岩石破裂强度综合预测方法","authors":"Wenhao Wang , Shengyang Feng , Xiaodong Wang , Yong Liu , Shili Han , Guoqiang Zeng","doi":"10.1016/j.jenvrad.2025.107782","DOIUrl":null,"url":null,"abstract":"<div><div>In geological and engineering practices, determining fracture intensity of rock masses is critical for the exploitation of resources such as oil, natural gas, uranium, and geothermal energy. Due to the lack of technological means to directly measure the distribution of rock fractures, it is very difficult to obtain the rock fracture intensity. This paper proposes an integrated approach to predicting rock fracture intensity based on artificial neural network (ANN) and radon tracing. Firstly, a radon migration model was established to numerically simulate radon exhalation rate of fractured rock masses under different fracture parameters. In the model, rock fractures were generated using the discrete fracture network (DFN). 900 sets of data were numerically calculated as learning data for the ANN using the model. The proposed method has good prediction accuracy with a coefficient of determination of 0.907. The number of hidden layers and neurons are key factors determining the accuracy of model prediction. Finally, the model was used to predict the fracture intensity of a fractured rock mass with outcrop. The predicted fracture intensity is close to the measured value, with a difference of 7.5 %.</div></div>","PeriodicalId":15667,"journal":{"name":"Journal of environmental radioactivity","volume":"289 ","pages":"Article 107782"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated approach to predicting rock fracture intensity based on radon tracing and artificial neural network\",\"authors\":\"Wenhao Wang , Shengyang Feng , Xiaodong Wang , Yong Liu , Shili Han , Guoqiang Zeng\",\"doi\":\"10.1016/j.jenvrad.2025.107782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In geological and engineering practices, determining fracture intensity of rock masses is critical for the exploitation of resources such as oil, natural gas, uranium, and geothermal energy. Due to the lack of technological means to directly measure the distribution of rock fractures, it is very difficult to obtain the rock fracture intensity. This paper proposes an integrated approach to predicting rock fracture intensity based on artificial neural network (ANN) and radon tracing. Firstly, a radon migration model was established to numerically simulate radon exhalation rate of fractured rock masses under different fracture parameters. In the model, rock fractures were generated using the discrete fracture network (DFN). 900 sets of data were numerically calculated as learning data for the ANN using the model. The proposed method has good prediction accuracy with a coefficient of determination of 0.907. The number of hidden layers and neurons are key factors determining the accuracy of model prediction. Finally, the model was used to predict the fracture intensity of a fractured rock mass with outcrop. The predicted fracture intensity is close to the measured value, with a difference of 7.5 %.</div></div>\",\"PeriodicalId\":15667,\"journal\":{\"name\":\"Journal of environmental radioactivity\",\"volume\":\"289 \",\"pages\":\"Article 107782\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental radioactivity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0265931X25001699\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental radioactivity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0265931X25001699","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Integrated approach to predicting rock fracture intensity based on radon tracing and artificial neural network
In geological and engineering practices, determining fracture intensity of rock masses is critical for the exploitation of resources such as oil, natural gas, uranium, and geothermal energy. Due to the lack of technological means to directly measure the distribution of rock fractures, it is very difficult to obtain the rock fracture intensity. This paper proposes an integrated approach to predicting rock fracture intensity based on artificial neural network (ANN) and radon tracing. Firstly, a radon migration model was established to numerically simulate radon exhalation rate of fractured rock masses under different fracture parameters. In the model, rock fractures were generated using the discrete fracture network (DFN). 900 sets of data were numerically calculated as learning data for the ANN using the model. The proposed method has good prediction accuracy with a coefficient of determination of 0.907. The number of hidden layers and neurons are key factors determining the accuracy of model prediction. Finally, the model was used to predict the fracture intensity of a fractured rock mass with outcrop. The predicted fracture intensity is close to the measured value, with a difference of 7.5 %.
期刊介绍:
The Journal of Environmental Radioactivity provides a coherent international forum for publication of original research or review papers on any aspect of the occurrence of radioactivity in natural systems.
Relevant subject areas range from applications of environmental radionuclides as mechanistic or timescale tracers of natural processes to assessments of the radioecological or radiological effects of ambient radioactivity. Papers deal with naturally occurring nuclides or with those created and released by man through nuclear weapons manufacture and testing, energy production, fuel-cycle technology, etc. Reports on radioactivity in the oceans, sediments, rivers, lakes, groundwaters, soils, atmosphere and all divisions of the biosphere are welcomed, but these should not simply be of a monitoring nature unless the data are particularly innovative.