子树距离,紧密跨度和多样性

IF 0.5 4区 数学 Q3 MATHEMATICS
David Bryant , Katharina T. Huber , Vincent Moulton , Andreas Spillner
{"title":"子树距离,紧密跨度和多样性","authors":"David Bryant ,&nbsp;Katharina T. Huber ,&nbsp;Vincent Moulton ,&nbsp;Andreas Spillner","doi":"10.1016/j.topol.2025.109545","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize when a set of distances <span><math><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> between elements in a set <em>X</em> have a <em>subtree representation</em>, a real tree <em>T</em> and a collection <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></msub></math></span> of subtrees of <em>T</em> such that <span><math><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> equals the length of the shortest path in <em>T</em> from a point in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> to a point in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span> for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>X</mi></math></span>. The characterization was first established for <em>finite X</em> by Hirai (2006) using a tight span construction defined for <em>distance spaces</em>, metric spaces without the triangle inequality. To extend Hirai's result beyond finite <em>X</em> we establish fundamental results of tight span theory for general distance spaces, including the surprising observation that the tight span of a distance space is hyperconvex. We apply the results to obtain the first characterization of when a diversity – a generalization of a metric space which assigns values to all finite subsets of <em>X</em>, not just to pairs – has a tight span which is tree-like.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109545"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subtree distances, tight spans and diversities\",\"authors\":\"David Bryant ,&nbsp;Katharina T. Huber ,&nbsp;Vincent Moulton ,&nbsp;Andreas Spillner\",\"doi\":\"10.1016/j.topol.2025.109545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We characterize when a set of distances <span><math><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> between elements in a set <em>X</em> have a <em>subtree representation</em>, a real tree <em>T</em> and a collection <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></msub></math></span> of subtrees of <em>T</em> such that <span><math><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> equals the length of the shortest path in <em>T</em> from a point in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> to a point in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span> for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>X</mi></math></span>. The characterization was first established for <em>finite X</em> by Hirai (2006) using a tight span construction defined for <em>distance spaces</em>, metric spaces without the triangle inequality. To extend Hirai's result beyond finite <em>X</em> we establish fundamental results of tight span theory for general distance spaces, including the surprising observation that the tight span of a distance space is hyperconvex. We apply the results to obtain the first characterization of when a diversity – a generalization of a metric space which assigns values to all finite subsets of <em>X</em>, not just to pairs – has a tight span which is tree-like.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"373 \",\"pages\":\"Article 109545\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125003438\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003438","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们描述当集合x中元素之间的距离d(x,y)有子树表示,实树T和T的子树集合{Sx}x∈x,使得d(x,y)等于T中从Sx中的一点到Sy中的一点对所有x,y∈x的最短路径的长度。Hirai(2006)首先在有限的X上建立了这个特征,使用了一个为距离空间定义的紧跨度构造,度量空间没有三角形不等式。为了将Hirai的结果推广到有限X之外,我们建立了一般距离空间的紧跨度理论的基本结果,包括距离空间的紧跨度是超凸的惊人观察。我们应用这些结果得到了当一个分集——一个度量空间的泛化,它给X的所有有限子集赋值,而不仅仅是给对赋值——具有树状的紧张成空间时的第一个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subtree distances, tight spans and diversities
We characterize when a set of distances d(x,y) between elements in a set X have a subtree representation, a real tree T and a collection {Sx}xX of subtrees of T such that d(x,y) equals the length of the shortest path in T from a point in Sx to a point in Sy for all x,yX. The characterization was first established for finite X by Hirai (2006) using a tight span construction defined for distance spaces, metric spaces without the triangle inequality. To extend Hirai's result beyond finite X we establish fundamental results of tight span theory for general distance spaces, including the surprising observation that the tight span of a distance space is hyperconvex. We apply the results to obtain the first characterization of when a diversity – a generalization of a metric space which assigns values to all finite subsets of X, not just to pairs – has a tight span which is tree-like.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信