CO2/CH4竞争性吸附和扩散的多尺度洞察:提高页岩气采收率和碳储存优化的分子动力学和孔隙尺度建模

IF 5.5 0 ENERGY & FUELS
Nong Kang, Feng Yang, Peixing Xu, Sijia Nie
{"title":"CO2/CH4竞争性吸附和扩散的多尺度洞察:提高页岩气采收率和碳储存优化的分子动力学和孔隙尺度建模","authors":"Nong Kang,&nbsp;Feng Yang,&nbsp;Peixing Xu,&nbsp;Sijia Nie","doi":"10.1016/j.jgsce.2025.205761","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> injection in shale reservoirs is highly promising and feasible in enhanced shale gas recovery and carbon capture and storage (CCS). It is essential to fully understand the complex competitive adsorption and diffusive behaviors of CO<sub>2</sub> and CH<sub>4</sub> in shale reservoirs at multiscale levels. This study integrates molecular dynamics (MD) and pore-scale simulations on nano-CT-reconstructed 3D shale matrices to unravel CO<sub>2</sub>/CH<sub>4</sub> competitive adsorption and diffusion across multiple scales. MD results demonstrate the preferential adsorption of CO<sub>2</sub> over CH<sub>4</sub>, with binding affinities ranked: organic matter &gt; SiO<sub>2</sub> &gt; kaolinite. The confinement effects in small nanopores (4 nm) amplify the density of CO<sub>2</sub> adsorption by 60–70 % compared to larger pores (10 and 20 nm), while the adsorption/desorption rates derived from MD simulation and the diffusion coefficients calculated from MSD govern the transport dynamics. The uniform porous model (UPM) achieves 43–64 % CO<sub>2</sub> recovery at optimized CO<sub>2</sub> concentrations (300–600 mol/m<sup>3</sup>), while the fractured porous model (FPM) exhibits lower recovery due to preferential flow bypassing adsorbed CO<sub>2</sub>. The diminishing returns beyond 600 mol/m<sup>3</sup> highlight a critical balance between methane production and injection of CO<sub>2</sub>.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"144 ","pages":"Article 205761"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale insights into CO2/CH4 competitive adsorption and diffusion: Molecular dynamics and pore-scale modeling for enhanced shale gas recovery and carbon storage optimization\",\"authors\":\"Nong Kang,&nbsp;Feng Yang,&nbsp;Peixing Xu,&nbsp;Sijia Nie\",\"doi\":\"10.1016/j.jgsce.2025.205761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CO<sub>2</sub> injection in shale reservoirs is highly promising and feasible in enhanced shale gas recovery and carbon capture and storage (CCS). It is essential to fully understand the complex competitive adsorption and diffusive behaviors of CO<sub>2</sub> and CH<sub>4</sub> in shale reservoirs at multiscale levels. This study integrates molecular dynamics (MD) and pore-scale simulations on nano-CT-reconstructed 3D shale matrices to unravel CO<sub>2</sub>/CH<sub>4</sub> competitive adsorption and diffusion across multiple scales. MD results demonstrate the preferential adsorption of CO<sub>2</sub> over CH<sub>4</sub>, with binding affinities ranked: organic matter &gt; SiO<sub>2</sub> &gt; kaolinite. The confinement effects in small nanopores (4 nm) amplify the density of CO<sub>2</sub> adsorption by 60–70 % compared to larger pores (10 and 20 nm), while the adsorption/desorption rates derived from MD simulation and the diffusion coefficients calculated from MSD govern the transport dynamics. The uniform porous model (UPM) achieves 43–64 % CO<sub>2</sub> recovery at optimized CO<sub>2</sub> concentrations (300–600 mol/m<sup>3</sup>), while the fractured porous model (FPM) exhibits lower recovery due to preferential flow bypassing adsorbed CO<sub>2</sub>. The diminishing returns beyond 600 mol/m<sup>3</sup> highlight a critical balance between methane production and injection of CO<sub>2</sub>.</div></div>\",\"PeriodicalId\":100568,\"journal\":{\"name\":\"Gas Science and Engineering\",\"volume\":\"144 \",\"pages\":\"Article 205761\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gas Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949908925002250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925002250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

页岩储层注CO2在提高页岩气采收率和碳捕集与封存(CCS)方面具有广阔的应用前景和可行性。全面了解页岩储层中CO2和CH4在多尺度上的复杂竞争吸附和扩散行为至关重要。该研究将分子动力学(MD)和孔隙尺度模拟结合在纳米ct重建的3D页岩基质上,以揭示CO2/CH4在多个尺度上的竞争吸附和扩散。MD结果显示CO2比CH4更优先吸附,其结合亲合力排序为:有机质+ SiO2 +高岭石。与大孔(10和20 nm)相比,小纳米孔(4 nm)的限制效应使CO2吸附密度增加了60 - 70%,而由MD模拟得出的吸附/解吸速率和由MSD计算的扩散系数决定了输运动力学。均匀多孔模型(UPM)在最佳CO2浓度(300-600 mol/m3)下的CO2采收率为43 - 64%,而裂缝多孔模型(FPM)由于优先流动绕过吸附的CO2,采收率较低。超过600 mol/m3后的递减收益突出了甲烷产量和二氧化碳注入之间的关键平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale insights into CO2/CH4 competitive adsorption and diffusion: Molecular dynamics and pore-scale modeling for enhanced shale gas recovery and carbon storage optimization
CO2 injection in shale reservoirs is highly promising and feasible in enhanced shale gas recovery and carbon capture and storage (CCS). It is essential to fully understand the complex competitive adsorption and diffusive behaviors of CO2 and CH4 in shale reservoirs at multiscale levels. This study integrates molecular dynamics (MD) and pore-scale simulations on nano-CT-reconstructed 3D shale matrices to unravel CO2/CH4 competitive adsorption and diffusion across multiple scales. MD results demonstrate the preferential adsorption of CO2 over CH4, with binding affinities ranked: organic matter > SiO2 > kaolinite. The confinement effects in small nanopores (4 nm) amplify the density of CO2 adsorption by 60–70 % compared to larger pores (10 and 20 nm), while the adsorption/desorption rates derived from MD simulation and the diffusion coefficients calculated from MSD govern the transport dynamics. The uniform porous model (UPM) achieves 43–64 % CO2 recovery at optimized CO2 concentrations (300–600 mol/m3), while the fractured porous model (FPM) exhibits lower recovery due to preferential flow bypassing adsorbed CO2. The diminishing returns beyond 600 mol/m3 highlight a critical balance between methane production and injection of CO2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信