纳米孔中阳离子-水相互作用和动力学的dft建模

IF 2.4 3区 化学 Q4 CHEMISTRY, PHYSICAL
Kharroubi Mohamed , Belarbi El-Habib , Haouzi Ahmed
{"title":"纳米孔中阳离子-水相互作用和动力学的dft建模","authors":"Kharroubi Mohamed ,&nbsp;Belarbi El-Habib ,&nbsp;Haouzi Ahmed","doi":"10.1016/j.chemphys.2025.112897","DOIUrl":null,"url":null,"abstract":"<div><div>The interaction of alkali-exchanged montmorillonite surfaces with cations was systematically examined using density functional theory (DFT) to evaluate how alkali metal ions (Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>) influence surface energy. These interactions were analyzed and contrasted with those involving alkaline earth cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Ba<sup>2+</sup>) to elucidate the impact of ionic charge and radius on the clay framework's energetics. To gain insight into ion transport phenomena at the clay surface, we introduced a minimalist hopping model that captures cation migration between energetically favorable sites. Complementary impedance spectroscopy measurements during controlled water adsorption provided experimental validation, revealing that hydration markedly lowers migration energy barriers and modifies surface energetics. This integrated computational–experimental approach advances our understanding of ion mobility in hydrated aluminosilicates and underscores the central role of water in shaping interfacial ionic dynamics.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"600 ","pages":"Article 112897"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT-based modeling of cation–water interactions and dynamics in nanopores\",\"authors\":\"Kharroubi Mohamed ,&nbsp;Belarbi El-Habib ,&nbsp;Haouzi Ahmed\",\"doi\":\"10.1016/j.chemphys.2025.112897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The interaction of alkali-exchanged montmorillonite surfaces with cations was systematically examined using density functional theory (DFT) to evaluate how alkali metal ions (Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>) influence surface energy. These interactions were analyzed and contrasted with those involving alkaline earth cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Ba<sup>2+</sup>) to elucidate the impact of ionic charge and radius on the clay framework's energetics. To gain insight into ion transport phenomena at the clay surface, we introduced a minimalist hopping model that captures cation migration between energetically favorable sites. Complementary impedance spectroscopy measurements during controlled water adsorption provided experimental validation, revealing that hydration markedly lowers migration energy barriers and modifies surface energetics. This integrated computational–experimental approach advances our understanding of ion mobility in hydrated aluminosilicates and underscores the central role of water in shaping interfacial ionic dynamics.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"600 \",\"pages\":\"Article 112897\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425002988\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425002988","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论(DFT)系统地考察了碱交换蒙脱土表面与阳离子的相互作用,以评价碱金属离子(Li+、Na+、K+、Rb+、Cs+)对表面能的影响。将这些相互作用与碱土阳离子(Mg2+, Ca2+, Ba2+)的相互作用进行了分析和对比,以阐明离子电荷和半径对粘土骨架能量学的影响。为了深入了解粘土表面的离子传输现象,我们引入了一个极简跳跃模型,该模型捕捉了阳离子在能量有利位置之间的迁移。在受控的水吸附过程中,互补阻抗谱测量提供了实验验证,表明水化作用显著降低了迁移能垒并改变了表面能量。这种综合的计算-实验方法推进了我们对水合铝硅酸盐中离子迁移率的理解,并强调了水在形成界面离子动力学中的核心作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DFT-based modeling of cation–water interactions and dynamics in nanopores
The interaction of alkali-exchanged montmorillonite surfaces with cations was systematically examined using density functional theory (DFT) to evaluate how alkali metal ions (Li+, Na+, K+, Rb+, Cs+) influence surface energy. These interactions were analyzed and contrasted with those involving alkaline earth cations (Mg2+, Ca2+, Ba2+) to elucidate the impact of ionic charge and radius on the clay framework's energetics. To gain insight into ion transport phenomena at the clay surface, we introduced a minimalist hopping model that captures cation migration between energetically favorable sites. Complementary impedance spectroscopy measurements during controlled water adsorption provided experimental validation, revealing that hydration markedly lowers migration energy barriers and modifies surface energetics. This integrated computational–experimental approach advances our understanding of ion mobility in hydrated aluminosilicates and underscores the central role of water in shaping interfacial ionic dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信