平滑分位数回归平均:电价概率预测的新方法

IF 4.5 4区 经济学 Q1 BUSINESS, FINANCE
Bartosz Uniejewski
{"title":"平滑分位数回归平均:电价概率预测的新方法","authors":"Bartosz Uniejewski","doi":"10.1016/j.jcomm.2025.100501","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate short-term price forecasting is essential for daily operations in electricity markets. This article introduces a new method, called Smoothing Quantile Regression (SQR) Averaging, that improves upon well-performing probabilistic forecasting schemes. To demonstrate its utility, a comprehensive study is conducted on two electricity markets, including recent data covering the COVID-19 pandemic and the Russian invasion of Ukraine. The performance of SQR Averaging is evaluated both in terms of reliability and sharpness measures, and economic benefits from a trading strategy. The latter utilizes battery storage and sets limit orders using selected quantiles of the predictive distribution. SQR Averaging leads to profit increases compared to the benchmark strategy based solely on point forecasts. This is strong evidence for the practical value of using probabilistic forecasts in day-ahead power trading, even in the face of the COVID-19 pandemic and geopolitical disruptions.</div></div>","PeriodicalId":45111,"journal":{"name":"Journal of Commodity Markets","volume":"39 ","pages":"Article 100501"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothing quantile regression averaging: A new approach to probabilistic forecasting of electricity prices\",\"authors\":\"Bartosz Uniejewski\",\"doi\":\"10.1016/j.jcomm.2025.100501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate short-term price forecasting is essential for daily operations in electricity markets. This article introduces a new method, called Smoothing Quantile Regression (SQR) Averaging, that improves upon well-performing probabilistic forecasting schemes. To demonstrate its utility, a comprehensive study is conducted on two electricity markets, including recent data covering the COVID-19 pandemic and the Russian invasion of Ukraine. The performance of SQR Averaging is evaluated both in terms of reliability and sharpness measures, and economic benefits from a trading strategy. The latter utilizes battery storage and sets limit orders using selected quantiles of the predictive distribution. SQR Averaging leads to profit increases compared to the benchmark strategy based solely on point forecasts. This is strong evidence for the practical value of using probabilistic forecasts in day-ahead power trading, even in the face of the COVID-19 pandemic and geopolitical disruptions.</div></div>\",\"PeriodicalId\":45111,\"journal\":{\"name\":\"Journal of Commodity Markets\",\"volume\":\"39 \",\"pages\":\"Article 100501\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Commodity Markets\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405851325000455\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commodity Markets","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405851325000455","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

准确的短期价格预测对电力市场的日常运作至关重要。本文介绍了一种新的方法,称为平滑分位数回归(SQR)平均,它改进了性能良好的概率预测方案。为了证明其效用,对两个电力市场进行了全面研究,包括最近涵盖COVID-19大流行和俄罗斯入侵乌克兰的数据。对SQR平均的性能进行了评估,包括可靠性和清晰度指标,以及交易策略的经济效益。后者利用电池存储并使用预测分布的选定分位数设置限制订单。与仅基于点预测的基准策略相比,SQR平均导致利润增加。这有力地证明了在日前电力交易中使用概率预测的实际价值,即使面对COVID-19大流行和地缘政治动荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothing quantile regression averaging: A new approach to probabilistic forecasting of electricity prices
Accurate short-term price forecasting is essential for daily operations in electricity markets. This article introduces a new method, called Smoothing Quantile Regression (SQR) Averaging, that improves upon well-performing probabilistic forecasting schemes. To demonstrate its utility, a comprehensive study is conducted on two electricity markets, including recent data covering the COVID-19 pandemic and the Russian invasion of Ukraine. The performance of SQR Averaging is evaluated both in terms of reliability and sharpness measures, and economic benefits from a trading strategy. The latter utilizes battery storage and sets limit orders using selected quantiles of the predictive distribution. SQR Averaging leads to profit increases compared to the benchmark strategy based solely on point forecasts. This is strong evidence for the practical value of using probabilistic forecasts in day-ahead power trading, even in the face of the COVID-19 pandemic and geopolitical disruptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
2.40%
发文量
53
期刊介绍: The purpose of the journal is also to stimulate international dialog among academics, industry participants, traders, investors, and policymakers with mutual interests in commodity markets. The mandate for the journal is to present ongoing work within commodity economics and finance. Topics can be related to financialization of commodity markets; pricing, hedging, and risk analysis of commodity derivatives; risk premia in commodity markets; real option analysis for commodity project investment and production; portfolio allocation including commodities; forecasting in commodity markets; corporate finance for commodity-exposed corporations; econometric/statistical analysis of commodity markets; organization of commodity markets; regulation of commodity markets; local and global commodity trading; and commodity supply chains. Commodity markets in this context are energy markets (including renewables), metal markets, mineral markets, agricultural markets, livestock and fish markets, markets for weather derivatives, emission markets, shipping markets, water, and related markets. This interdisciplinary and trans-disciplinary journal will cover all commodity markets and is thus relevant for a broad audience. Commodity markets are not only of academic interest but also highly relevant for many practitioners, including asset managers, industrial managers, investment bankers, risk managers, and also policymakers in governments, central banks, and supranational institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信