一种嗜热细菌分子元件的筛选及耐热性的提高

Jie Cui , Caifeng Li , Gongze Cao , Yuxia Wu , Shouying Xu , Youming Zhang , Xiaoying Bian , Qiang Tu , Wentao Zheng
{"title":"一种嗜热细菌分子元件的筛选及耐热性的提高","authors":"Jie Cui ,&nbsp;Caifeng Li ,&nbsp;Gongze Cao ,&nbsp;Yuxia Wu ,&nbsp;Shouying Xu ,&nbsp;Youming Zhang ,&nbsp;Xiaoying Bian ,&nbsp;Qiang Tu ,&nbsp;Wentao Zheng","doi":"10.1016/j.engmic.2025.100225","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering microorganisms to withstand extreme temperatures (&gt;80 °C) remains a critical challenge in industrial biotechnology owing to limited genetic tools and poor mechanistic understanding of microbial thermoadaptation. We aimed to develop a novel <em>Geobacillus stearothermophilus</em> strain with remarkable thermal resilience through an integrated approach combining adaptive laboratory evolution and rational genetic engineering. Progressive thermal adaptation (70–80 °C) followed by genome reduction generated a mutant (SL-1–80) with enhanced stability at 80 °C. Subsequent combinatorial overexpression of eight heat-associated genes (<em>murD, cysM, grpE, groES, hsp33, hslO, hrcA, clpE</em>) synergistically extended its survival to 85 °C. Genomic and transcriptomic analyses revealed a triple mechanism: (1) strategic deletion of transposable elements (IS5377/IS4/IS110) reduced genomic instability, (2) co-activation of chaperone systems (GroES-GrpE) and redox homeostasis enzymes (HslO<img>Hsp33) enhanced protein folding and oxidative stress resistance, and (3) metabolic plasticity (BglG and HTH-domain transcriptional repressor), motility optimization (FliY), and transcriptional reprogramming (Sigma-D, DUF47-family chaperone and HTH-domain transcriptional repressor) facilitated nutrient acquisition and motility-based environmental navigation under stress. Furthermore, we established the first high-efficiency electroporation protocol (10<sup>4</sup> transformants/µg DNA) for this genus, enabling ATP-enhanced heterologous protein expression under heat stress. This study provided a robust platform organism for high-temperature bioprocessing and a mechanistic blueprint for engineering microbial thermotolerance, addressing key limitations in applications such as microbial-enhanced oil recovery and industrial enzyme production.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 3","pages":"Article 100225"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of molecular elements and improvement of heat resistance in a thermophilic bacterium\",\"authors\":\"Jie Cui ,&nbsp;Caifeng Li ,&nbsp;Gongze Cao ,&nbsp;Yuxia Wu ,&nbsp;Shouying Xu ,&nbsp;Youming Zhang ,&nbsp;Xiaoying Bian ,&nbsp;Qiang Tu ,&nbsp;Wentao Zheng\",\"doi\":\"10.1016/j.engmic.2025.100225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Engineering microorganisms to withstand extreme temperatures (&gt;80 °C) remains a critical challenge in industrial biotechnology owing to limited genetic tools and poor mechanistic understanding of microbial thermoadaptation. We aimed to develop a novel <em>Geobacillus stearothermophilus</em> strain with remarkable thermal resilience through an integrated approach combining adaptive laboratory evolution and rational genetic engineering. Progressive thermal adaptation (70–80 °C) followed by genome reduction generated a mutant (SL-1–80) with enhanced stability at 80 °C. Subsequent combinatorial overexpression of eight heat-associated genes (<em>murD, cysM, grpE, groES, hsp33, hslO, hrcA, clpE</em>) synergistically extended its survival to 85 °C. Genomic and transcriptomic analyses revealed a triple mechanism: (1) strategic deletion of transposable elements (IS5377/IS4/IS110) reduced genomic instability, (2) co-activation of chaperone systems (GroES-GrpE) and redox homeostasis enzymes (HslO<img>Hsp33) enhanced protein folding and oxidative stress resistance, and (3) metabolic plasticity (BglG and HTH-domain transcriptional repressor), motility optimization (FliY), and transcriptional reprogramming (Sigma-D, DUF47-family chaperone and HTH-domain transcriptional repressor) facilitated nutrient acquisition and motility-based environmental navigation under stress. Furthermore, we established the first high-efficiency electroporation protocol (10<sup>4</sup> transformants/µg DNA) for this genus, enabling ATP-enhanced heterologous protein expression under heat stress. This study provided a robust platform organism for high-temperature bioprocessing and a mechanistic blueprint for engineering microbial thermotolerance, addressing key limitations in applications such as microbial-enhanced oil recovery and industrial enzyme production.</div></div>\",\"PeriodicalId\":100478,\"journal\":{\"name\":\"Engineering Microbiology\",\"volume\":\"5 3\",\"pages\":\"Article 100225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667370325000396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370325000396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工程微生物承受极端温度(80°C)仍然是工业生物技术的一个关键挑战,因为有限的遗传工具和对微生物热适应机制的了解不足。我们的目标是通过适应性实验室进化和合理基因工程相结合的综合方法,培养一种具有显著热弹性的新型嗜热硬脂地杆菌菌株。渐进式热适应(70-80°C),然后进行基因组还原,产生了在80°C下稳定性增强的突变体(SL-1-80)。随后,8个热相关基因(murD、cysM、grpE、groES、hsp33、hslO、hrcA、clpE)的组合过表达协同延长了其存活至85℃。基因组和转录组学分析揭示了三重机制:(1)转座元件(IS5377/IS4/IS110)的战略性缺失降低了基因组的不稳定性;(2)伴侣系统(GroES-GrpE)和氧化还原稳态酶(HslOHsp33)的共激活增强了蛋白质折叠和氧化应激抗性;(3)代谢可塑性(BglG和hth结构域转录抑制因子)、运动优化(fly)和转录重编程(Sigma-D);duf47(家族伴侣和hth结构域转录抑制因子)促进营养获取和应激下基于运动的环境导航。此外,我们为该属建立了第一个高效电穿孔协议(104个转化子/µg DNA),使atp增强的异种蛋白在热胁迫下表达。该研究为高温生物处理提供了一个强大的生物平台,并为工程微生物耐热性提供了一个机制蓝图,解决了微生物增强采油和工业酶生产等应用中的关键限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Screening of molecular elements and improvement of heat resistance in a thermophilic bacterium

Screening of molecular elements and improvement of heat resistance in a thermophilic bacterium
Engineering microorganisms to withstand extreme temperatures (>80 °C) remains a critical challenge in industrial biotechnology owing to limited genetic tools and poor mechanistic understanding of microbial thermoadaptation. We aimed to develop a novel Geobacillus stearothermophilus strain with remarkable thermal resilience through an integrated approach combining adaptive laboratory evolution and rational genetic engineering. Progressive thermal adaptation (70–80 °C) followed by genome reduction generated a mutant (SL-1–80) with enhanced stability at 80 °C. Subsequent combinatorial overexpression of eight heat-associated genes (murD, cysM, grpE, groES, hsp33, hslO, hrcA, clpE) synergistically extended its survival to 85 °C. Genomic and transcriptomic analyses revealed a triple mechanism: (1) strategic deletion of transposable elements (IS5377/IS4/IS110) reduced genomic instability, (2) co-activation of chaperone systems (GroES-GrpE) and redox homeostasis enzymes (HslOHsp33) enhanced protein folding and oxidative stress resistance, and (3) metabolic plasticity (BglG and HTH-domain transcriptional repressor), motility optimization (FliY), and transcriptional reprogramming (Sigma-D, DUF47-family chaperone and HTH-domain transcriptional repressor) facilitated nutrient acquisition and motility-based environmental navigation under stress. Furthermore, we established the first high-efficiency electroporation protocol (104 transformants/µg DNA) for this genus, enabling ATP-enhanced heterologous protein expression under heat stress. This study provided a robust platform organism for high-temperature bioprocessing and a mechanistic blueprint for engineering microbial thermotolerance, addressing key limitations in applications such as microbial-enhanced oil recovery and industrial enzyme production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信