{"title":"扭曲立方体的轨道","authors":"Jia-Jie Liu","doi":"10.1016/j.dam.2025.08.028","DOIUrl":null,"url":null,"abstract":"<div><div>Two vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> in a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> are in the same orbit if there exists an automorphism <span><math><mi>ϕ</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>v</mi></mrow></math></span>. The orbit number of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>O</mi><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest number of orbits that partition <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. All vertex-transitive graphs <span><math><mi>G</mi></math></span> satisfy <span><math><mrow><mi>O</mi><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>. Since the <span><math><mi>n</mi></math></span>-dimensional hypercube, denoted by <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, is vertex-transitive, it follows that <span><math><mrow><mi>O</mi><mi>r</mi><mi>b</mi><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. The twisted cube (Abraham and Padmanabhan, 1991), denoted by <span><math><mrow><mi>T</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, is an interesting variant of the hypercube. In this paper, we prove that <span><math><mrow><mi>O</mi><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>T</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>≤</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>O</mi><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>T</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msup></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 170-176"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The orbits of twisted cubes\",\"authors\":\"Jia-Jie Liu\",\"doi\":\"10.1016/j.dam.2025.08.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> in a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> are in the same orbit if there exists an automorphism <span><math><mi>ϕ</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>v</mi></mrow></math></span>. The orbit number of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>O</mi><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest number of orbits that partition <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. All vertex-transitive graphs <span><math><mi>G</mi></math></span> satisfy <span><math><mrow><mi>O</mi><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>. Since the <span><math><mi>n</mi></math></span>-dimensional hypercube, denoted by <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, is vertex-transitive, it follows that <span><math><mrow><mi>O</mi><mi>r</mi><mi>b</mi><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. The twisted cube (Abraham and Padmanabhan, 1991), denoted by <span><math><mrow><mi>T</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, is an interesting variant of the hypercube. In this paper, we prove that <span><math><mrow><mi>O</mi><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>T</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>≤</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>O</mi><mi>r</mi><mi>b</mi><mrow><mo>(</mo><mi>T</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msup></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 170-176\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2500469X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500469X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
图G=(v,E)中的两个顶点u和v在同一轨道上,如果存在G的自同构φ使得φ (u)=v。图G的轨道数,用Orb(G)表示,是分割V(G)的最小轨道数。所有顶点传递图G都满足Orb(G)=1。由于用Qn表示的n维超立方体是顶点可传递的,因此当n≥1时Orb(Qn)=1。扭曲立方体(Abraham and Padmanabhan, 1991),用TQn表示,是超立方体的一个有趣变体。本文证明了当n≤4时Orb(TQn)=1,当n≥5时Orb(TQn)=2⌊n−32⌋。
Two vertices and in a graph are in the same orbit if there exists an automorphism of such that . The orbit number of a graph , denoted by , is the smallest number of orbits that partition . All vertex-transitive graphs satisfy . Since the -dimensional hypercube, denoted by , is vertex-transitive, it follows that for . The twisted cube (Abraham and Padmanabhan, 1991), denoted by , is an interesting variant of the hypercube. In this paper, we prove that if and if .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.