具有振荡尺度不变阻尼的波动方程的模型实例

IF 2.3 2区 数学 Q1 MATHEMATICS
Marina Ghisi, Massimo Gobbino
{"title":"具有振荡尺度不变阻尼的波动方程的模型实例","authors":"Marina Ghisi,&nbsp;Massimo Gobbino","doi":"10.1016/j.jde.2025.113695","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze a simple example of wave equation with a time-dependent damping term, whose coefficient decays at infinity at the scale-invariant rate and includes an oscillatory component that is integrable but not absolutely integrable.</div><div>We show that the oscillations in the damping coefficient induce a resonance effect with a fundamental solution of the elastic term, altering the energy decay rate of solutions. In particular, some solutions exhibit slower decay compared to the case without the oscillatory component.</div><div>Our proof relies on Fourier analysis and a representation of solutions in polar coordinates, reducing the problem to a detailed study of the asymptotic behavior of solutions to a family of ordinary differential equations and suitable oscillatory integrals.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"448 ","pages":"Article 113695"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The model example of wave equation with oscillating scale-invariant damping\",\"authors\":\"Marina Ghisi,&nbsp;Massimo Gobbino\",\"doi\":\"10.1016/j.jde.2025.113695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We analyze a simple example of wave equation with a time-dependent damping term, whose coefficient decays at infinity at the scale-invariant rate and includes an oscillatory component that is integrable but not absolutely integrable.</div><div>We show that the oscillations in the damping coefficient induce a resonance effect with a fundamental solution of the elastic term, altering the energy decay rate of solutions. In particular, some solutions exhibit slower decay compared to the case without the oscillatory component.</div><div>Our proof relies on Fourier analysis and a representation of solutions in polar coordinates, reducing the problem to a detailed study of the asymptotic behavior of solutions to a family of ordinary differential equations and suitable oscillatory integrals.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"448 \",\"pages\":\"Article 113695\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007223\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007223","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了一个具有时变阻尼项的波动方程的简单例子,它的系数以尺度不变的速率衰减到无穷大,并且包含一个可积但不是绝对可积的振荡分量。我们证明了阻尼系数的振荡与弹性项的基本解产生共振效应,改变了解的能量衰减率。特别是,与没有振荡分量的情况相比,一些溶液表现出较慢的衰减。我们的证明依赖于傅里叶分析和极坐标解的表示,将问题简化为对一组常微分方程和合适的振荡积分解的渐近行为的详细研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The model example of wave equation with oscillating scale-invariant damping
We analyze a simple example of wave equation with a time-dependent damping term, whose coefficient decays at infinity at the scale-invariant rate and includes an oscillatory component that is integrable but not absolutely integrable.
We show that the oscillations in the damping coefficient induce a resonance effect with a fundamental solution of the elastic term, altering the energy decay rate of solutions. In particular, some solutions exhibit slower decay compared to the case without the oscillatory component.
Our proof relies on Fourier analysis and a representation of solutions in polar coordinates, reducing the problem to a detailed study of the asymptotic behavior of solutions to a family of ordinary differential equations and suitable oscillatory integrals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信