反应-扩散- ode系统稳态解的非线性稳定性结果

IF 2.3 2区 数学 Q1 MATHEMATICS
Chris Kowall , Anna Marciniak-Czochra , Finn Münnich
{"title":"反应-扩散- ode系统稳态解的非线性稳定性结果","authors":"Chris Kowall ,&nbsp;Anna Marciniak-Czochra ,&nbsp;Finn Münnich","doi":"10.1016/j.jde.2025.113704","DOIUrl":null,"url":null,"abstract":"<div><div>Reaction-diffusion-ODE systems are emerging in modeling of biological pattern formation based on the coupling of diffusive and non-diffusive spatially heterogeneous processes. They may exhibit patterns with singularities such as jump-discontinuities. This work provides nonlinear stability and instability conditions for bounded stationary solutions of reaction-diffusion-ODE systems consisting of <em>m</em> ODEs coupled with <em>k</em> reaction-diffusion equations. We characterize the spectrum of the linearized operator and relate its spectral properties to the corresponding semigroup properties. Considering the function spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mrow><mi>m</mi><mo>+</mo><mi>k</mi></mrow></msup><mo>,</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mo>×</mo><mi>C</mi><msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span> and <span><math><mi>C</mi><msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow><mrow><mi>m</mi><mo>+</mo><mi>k</mi></mrow></msup></math></span>, we establish a sign condition on the spectral bound of the linearized operator, which implies nonlinear stability or instability of the stationary pattern.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"448 ","pages":"Article 113704"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems\",\"authors\":\"Chris Kowall ,&nbsp;Anna Marciniak-Czochra ,&nbsp;Finn Münnich\",\"doi\":\"10.1016/j.jde.2025.113704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reaction-diffusion-ODE systems are emerging in modeling of biological pattern formation based on the coupling of diffusive and non-diffusive spatially heterogeneous processes. They may exhibit patterns with singularities such as jump-discontinuities. This work provides nonlinear stability and instability conditions for bounded stationary solutions of reaction-diffusion-ODE systems consisting of <em>m</em> ODEs coupled with <em>k</em> reaction-diffusion equations. We characterize the spectrum of the linearized operator and relate its spectral properties to the corresponding semigroup properties. Considering the function spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mrow><mi>m</mi><mo>+</mo><mi>k</mi></mrow></msup><mo>,</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mo>×</mo><mi>C</mi><msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span> and <span><math><mi>C</mi><msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow><mrow><mi>m</mi><mo>+</mo><mi>k</mi></mrow></msup></math></span>, we establish a sign condition on the spectral bound of the linearized operator, which implies nonlinear stability or instability of the stationary pattern.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"448 \",\"pages\":\"Article 113704\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007314\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007314","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

反应-扩散- ode系统是基于扩散和非扩散空间异质过程耦合的生物模式形成建模中出现的。它们可能表现出具有奇点的模式,如跳跃不连续。本文给出了由m个ode与k个反应扩散方程耦合组成的反应扩散ode系统有界平稳解的非线性稳定性和不稳定性条件。我们刻画了线性化算子的谱,并将其谱性质与相应的半群性质联系起来。考虑函数空间L∞(Ω)m+k、L∞(Ω)m×C(Ω)k和C(Ω)m+k,我们在线性化算子的谱界上建立了一个符号条件,暗示了平稳模式的非线性稳定性或不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems
Reaction-diffusion-ODE systems are emerging in modeling of biological pattern formation based on the coupling of diffusive and non-diffusive spatially heterogeneous processes. They may exhibit patterns with singularities such as jump-discontinuities. This work provides nonlinear stability and instability conditions for bounded stationary solutions of reaction-diffusion-ODE systems consisting of m ODEs coupled with k reaction-diffusion equations. We characterize the spectrum of the linearized operator and relate its spectral properties to the corresponding semigroup properties. Considering the function spaces L(Ω)m+k,L(Ω)m×C(Ω)k and C(Ω)m+k, we establish a sign condition on the spectral bound of the linearized operator, which implies nonlinear stability or instability of the stationary pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信