{"title":"股票市场参与和电力公司有限的均衡存在","authors":"Paolo Guasoni , Kasper Larsen , Giovanni Leoni","doi":"10.1016/j.jde.2025.113694","DOIUrl":null,"url":null,"abstract":"<div><div>For constants <span><math><mi>γ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>A</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, we prove existence and uniqueness of a solution to the singular and path-dependent Riccati-type ODE<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mi>h</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>γ</mi></mrow><mrow><mi>y</mi></mrow></mfrac><mo>(</mo><mi>γ</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>h</mi><mo>(</mo><mi>y</mi><mo>)</mo><mfrac><mrow><mi>γ</mi><mo>+</mo><mo>(</mo><mo>(</mo><mi>A</mi><mo>−</mo><mi>γ</mi><mo>)</mo><mi>exp</mi><mo></mo><mo>{</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mfrac><mrow><mn>1</mn><mo>−</mo><mi>h</mi><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>−</mo><mi>q</mi></mrow></mfrac><mi>d</mi><mi>q</mi><mo>}</mo><mo>−</mo><mi>A</mi><mo>)</mo><mi>h</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>−</mo><mi>y</mi></mrow></mfrac><mo>,</mo><mspace></mspace><mi>y</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>h</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>γ</mi><mo>,</mo><mspace></mspace><mi>h</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn><mo>.</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> As an application, we use the ODE solution to prove existence of a Radner equilibrium with homogeneous power-utility investors in the limited participation model from Basak and Cuoco (1998).</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"448 ","pages":"Article 113694"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of an equilibrium with limited stock market participation and power utilities\",\"authors\":\"Paolo Guasoni , Kasper Larsen , Giovanni Leoni\",\"doi\":\"10.1016/j.jde.2025.113694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For constants <span><math><mi>γ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>A</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, we prove existence and uniqueness of a solution to the singular and path-dependent Riccati-type ODE<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mi>h</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>γ</mi></mrow><mrow><mi>y</mi></mrow></mfrac><mo>(</mo><mi>γ</mi><mo>−</mo><mi>h</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>h</mi><mo>(</mo><mi>y</mi><mo>)</mo><mfrac><mrow><mi>γ</mi><mo>+</mo><mo>(</mo><mo>(</mo><mi>A</mi><mo>−</mo><mi>γ</mi><mo>)</mo><mi>exp</mi><mo></mo><mo>{</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mfrac><mrow><mn>1</mn><mo>−</mo><mi>h</mi><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>−</mo><mi>q</mi></mrow></mfrac><mi>d</mi><mi>q</mi><mo>}</mo><mo>−</mo><mi>A</mi><mo>)</mo><mi>h</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>−</mo><mi>y</mi></mrow></mfrac><mo>,</mo><mspace></mspace><mi>y</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><mi>h</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>γ</mi><mo>,</mo><mspace></mspace><mi>h</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn><mo>.</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> As an application, we use the ODE solution to prove existence of a Radner equilibrium with homogeneous power-utility investors in the limited participation model from Basak and Cuoco (1998).</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"448 \",\"pages\":\"Article 113694\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007211\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007211","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence of an equilibrium with limited stock market participation and power utilities
For constants and , we prove existence and uniqueness of a solution to the singular and path-dependent Riccati-type ODE As an application, we use the ODE solution to prove existence of a Radner equilibrium with homogeneous power-utility investors in the limited participation model from Basak and Cuoco (1998).
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics