基于特征矩阵的未知噪声下的稀疏自由反卷积

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Lexing Ying
{"title":"基于特征矩阵的未知噪声下的稀疏自由反卷积","authors":"Lexing Ying","doi":"10.1016/j.acha.2025.101802","DOIUrl":null,"url":null,"abstract":"<div><div>This note considers the spectral estimation problems of sparse spectral measures under unknown noise levels. The main technical tool is the eigenmatrix method for solving unstructured sparse recovery problems. When the noise level is determined, the free deconvolution reduces the problem to an unstructured sparse recovery problem to which the eigenmatrix method can be applied. To determine the unknown noise level, we propose an optimization problem based on the singular values of an intermediate matrix of the eigenmatrix method. Numerical results are provided for both the additive and multiplicative free deconvolutions.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101802"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse free deconvolution under unknown noise level via eigenmatrix\",\"authors\":\"Lexing Ying\",\"doi\":\"10.1016/j.acha.2025.101802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This note considers the spectral estimation problems of sparse spectral measures under unknown noise levels. The main technical tool is the eigenmatrix method for solving unstructured sparse recovery problems. When the noise level is determined, the free deconvolution reduces the problem to an unstructured sparse recovery problem to which the eigenmatrix method can be applied. To determine the unknown noise level, we propose an optimization problem based on the singular values of an intermediate matrix of the eigenmatrix method. Numerical results are provided for both the additive and multiplicative free deconvolutions.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101802\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000569\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000569","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究未知噪声水平下稀疏谱测度的谱估计问题。求解非结构化稀疏恢复问题的主要技术工具是特征矩阵法。当噪声水平确定后,自由反褶积将问题简化为可应用特征矩阵方法的非结构化稀疏恢复问题。为了确定未知噪声水平,我们提出了一个基于特征矩阵法中间矩阵奇异值的优化问题。给出了加性和乘性自由反卷积的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse free deconvolution under unknown noise level via eigenmatrix
This note considers the spectral estimation problems of sparse spectral measures under unknown noise levels. The main technical tool is the eigenmatrix method for solving unstructured sparse recovery problems. When the noise level is determined, the free deconvolution reduces the problem to an unstructured sparse recovery problem to which the eigenmatrix method can be applied. To determine the unknown noise level, we propose an optimization problem based on the singular values of an intermediate matrix of the eigenmatrix method. Numerical results are provided for both the additive and multiplicative free deconvolutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信