Jinwang Li , Jianglin Tu , Zhefei Pan , Xun Zhu , Dingding Ye , Yang Yang , Liang An , Rong Chen , Qiang Liao
{"title":"WO3/BiVO4/Ti3C2/TiO2光阳极增强光电化学水氧化","authors":"Jinwang Li , Jianglin Tu , Zhefei Pan , Xun Zhu , Dingding Ye , Yang Yang , Liang An , Rong Chen , Qiang Liao","doi":"10.1016/j.jpowsour.2025.238159","DOIUrl":null,"url":null,"abstract":"<div><div>BiVO<sub>4</sub> is a promising semiconductor for photoelectrochemical water oxidation, yet its performance is still limited by rapid charge recombination and sluggish reaction kinetics. To address these challenges, a WO<sub>3</sub>/BiVO<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub> photoanode is developed via the integration of the WO<sub>3</sub>/BiVO<sub>4</sub> heterojunction with the Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub> Schottky junction. This architecture establishes an internal electric field and cascaded charge transport pathway, collectively suppressing charge recombination. The carrier lifetime is extended to 3.112 ns compared to the WO<sub>3</sub>/BiVO<sub>4</sub> heterojunction (2.111 ns). The hydrophilic nature of Ti<sub>3</sub>C<sub>2</sub> facilitates charge transfer at the photoanode/electrolyte interface. Moreover, the optical absorption edge of the developed photoanode is extended, improving solar energy utilization. Because of these merits, the WO<sub>3</sub>/BiVO<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub> photoanode yields a photocurrent density of 3.70 mA cm<sup>−2</sup> at 1.23 V vs. RHE, presenting an increase by 126 % over the WO<sub>3</sub>/BiVO<sub>4</sub> photoanode. This work demonstrates a promising interfacial engineering approach to develop high-performance photoanodes.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"657 ","pages":"Article 238159"},"PeriodicalIF":7.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photoelectrochemical water oxidation by WO3/BiVO4/Ti3C2/TiO2 photoanode\",\"authors\":\"Jinwang Li , Jianglin Tu , Zhefei Pan , Xun Zhu , Dingding Ye , Yang Yang , Liang An , Rong Chen , Qiang Liao\",\"doi\":\"10.1016/j.jpowsour.2025.238159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>BiVO<sub>4</sub> is a promising semiconductor for photoelectrochemical water oxidation, yet its performance is still limited by rapid charge recombination and sluggish reaction kinetics. To address these challenges, a WO<sub>3</sub>/BiVO<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub> photoanode is developed via the integration of the WO<sub>3</sub>/BiVO<sub>4</sub> heterojunction with the Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub> Schottky junction. This architecture establishes an internal electric field and cascaded charge transport pathway, collectively suppressing charge recombination. The carrier lifetime is extended to 3.112 ns compared to the WO<sub>3</sub>/BiVO<sub>4</sub> heterojunction (2.111 ns). The hydrophilic nature of Ti<sub>3</sub>C<sub>2</sub> facilitates charge transfer at the photoanode/electrolyte interface. Moreover, the optical absorption edge of the developed photoanode is extended, improving solar energy utilization. Because of these merits, the WO<sub>3</sub>/BiVO<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>/TiO<sub>2</sub> photoanode yields a photocurrent density of 3.70 mA cm<sup>−2</sup> at 1.23 V vs. RHE, presenting an increase by 126 % over the WO<sub>3</sub>/BiVO<sub>4</sub> photoanode. This work demonstrates a promising interfacial engineering approach to develop high-performance photoanodes.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"657 \",\"pages\":\"Article 238159\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325019950\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325019950","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
BiVO4是一种很有前途的用于光电化学水氧化的半导体材料,但其性能仍然受到快速电荷重组和缓慢反应动力学的限制。为了解决这些问题,通过将WO3/BiVO4异质结与Ti3C2/TiO2肖特基结集成,开发了WO3/BiVO4/Ti3C2/TiO2光阳极。该结构建立了一个内部电场和级联电荷传输途径,共同抑制电荷重组。与WO3/BiVO4异质结(2.111 ns)相比,载流子寿命延长至3.112 ns。Ti3C2的亲水性有利于电荷在光阳极/电解质界面的转移。此外,所开发的光阳极的光吸收边被延长,提高了太阳能的利用率。由于这些优点,WO3/BiVO4/Ti3C2/TiO2光阳极在1.23 V时产生的光电流密度为3.70 mA cm−2,比WO3/BiVO4光阳极增加了126%。这项工作展示了一种有前途的界面工程方法来开发高性能的光阳极。
Enhanced photoelectrochemical water oxidation by WO3/BiVO4/Ti3C2/TiO2 photoanode
BiVO4 is a promising semiconductor for photoelectrochemical water oxidation, yet its performance is still limited by rapid charge recombination and sluggish reaction kinetics. To address these challenges, a WO3/BiVO4/Ti3C2/TiO2 photoanode is developed via the integration of the WO3/BiVO4 heterojunction with the Ti3C2/TiO2 Schottky junction. This architecture establishes an internal electric field and cascaded charge transport pathway, collectively suppressing charge recombination. The carrier lifetime is extended to 3.112 ns compared to the WO3/BiVO4 heterojunction (2.111 ns). The hydrophilic nature of Ti3C2 facilitates charge transfer at the photoanode/electrolyte interface. Moreover, the optical absorption edge of the developed photoanode is extended, improving solar energy utilization. Because of these merits, the WO3/BiVO4/Ti3C2/TiO2 photoanode yields a photocurrent density of 3.70 mA cm−2 at 1.23 V vs. RHE, presenting an increase by 126 % over the WO3/BiVO4 photoanode. This work demonstrates a promising interfacial engineering approach to develop high-performance photoanodes.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems