{"title":"瓦哈卡-布林德分解的双机器学习","authors":"Minghai Mao , Antonio Raiola , Da Yang","doi":"10.1016/j.econlet.2025.112525","DOIUrl":null,"url":null,"abstract":"<div><div>We propose the double machine learning procedure to perform the Oaxaca-Blinder decomposition. The proposed procedure can provide the root-<span><math><mi>n</mi></math></span> convergence estimators under high dimensional mixed covariates. A small Monte Carlo simulation experiment is carried out for illustrations.</div></div>","PeriodicalId":11468,"journal":{"name":"Economics Letters","volume":"255 ","pages":"Article 112525"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double machine learning for Oaxaca-Blinder decomposition\",\"authors\":\"Minghai Mao , Antonio Raiola , Da Yang\",\"doi\":\"10.1016/j.econlet.2025.112525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose the double machine learning procedure to perform the Oaxaca-Blinder decomposition. The proposed procedure can provide the root-<span><math><mi>n</mi></math></span> convergence estimators under high dimensional mixed covariates. A small Monte Carlo simulation experiment is carried out for illustrations.</div></div>\",\"PeriodicalId\":11468,\"journal\":{\"name\":\"Economics Letters\",\"volume\":\"255 \",\"pages\":\"Article 112525\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics Letters\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165176525003623\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165176525003623","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Double machine learning for Oaxaca-Blinder decomposition
We propose the double machine learning procedure to perform the Oaxaca-Blinder decomposition. The proposed procedure can provide the root- convergence estimators under high dimensional mixed covariates. A small Monte Carlo simulation experiment is carried out for illustrations.
期刊介绍:
Many economists today are concerned by the proliferation of journals and the concomitant labyrinth of research to be conquered in order to reach the specific information they require. To combat this tendency, Economics Letters has been conceived and designed outside the realm of the traditional economics journal. As a Letters Journal, it consists of concise communications (letters) that provide a means of rapid and efficient dissemination of new results, models and methods in all fields of economic research.