{"title":"简系量子仿射代数上的实简单模和簇代数的范畴","authors":"Bing Duan , Ralf Schiffler","doi":"10.1016/j.jalgebra.2025.07.043","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>C</mi></math></span> be the category of finite-dimensional modules over a simply-laced quantum affine algebra <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>. For any height function <em>ξ</em> and <span><math><mi>ℓ</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>1</mn></mrow></msub></math></span>, we introduce certain subcategories <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> of <span><math><mi>C</mi></math></span>, and prove that the quantum Grothendieck ring <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup><mo>)</mo></math></span> of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> admits a quantum cluster algebra structure. We classify the real prime simple modules (call them the Hernandez–Leclerc modules) in <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> in terms of their highest <em>l</em>-weight monomials by relating this subcategory <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> to the cluster category <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> of the Dynkin quiver given by <em>ξ</em>. For any <em>ℓ</em>, we formulate the modified Hernandez-Leclerc conjectures, and prove them for the subcategories <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> whose Grothendieck rings are cluster algebras of finite type.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 608-672"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real simple modules over simply-laced quantum affine algebras and categorifications of cluster algebras\",\"authors\":\"Bing Duan , Ralf Schiffler\",\"doi\":\"10.1016/j.jalgebra.2025.07.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>C</mi></math></span> be the category of finite-dimensional modules over a simply-laced quantum affine algebra <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>. For any height function <em>ξ</em> and <span><math><mi>ℓ</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>1</mn></mrow></msub></math></span>, we introduce certain subcategories <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> of <span><math><mi>C</mi></math></span>, and prove that the quantum Grothendieck ring <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup><mo>)</mo></math></span> of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> admits a quantum cluster algebra structure. We classify the real prime simple modules (call them the Hernandez–Leclerc modules) in <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> in terms of their highest <em>l</em>-weight monomials by relating this subcategory <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> to the cluster category <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> of the Dynkin quiver given by <em>ξ</em>. For any <em>ℓ</em>, we formulate the modified Hernandez-Leclerc conjectures, and prove them for the subcategories <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> whose Grothendieck rings are cluster algebras of finite type.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 608-672\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004594\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004594","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Real simple modules over simply-laced quantum affine algebras and categorifications of cluster algebras
Let be the category of finite-dimensional modules over a simply-laced quantum affine algebra . For any height function ξ and , we introduce certain subcategories of , and prove that the quantum Grothendieck ring of admits a quantum cluster algebra structure. We classify the real prime simple modules (call them the Hernandez–Leclerc modules) in in terms of their highest l-weight monomials by relating this subcategory to the cluster category of the Dynkin quiver given by ξ. For any ℓ, we formulate the modified Hernandez-Leclerc conjectures, and prove them for the subcategories whose Grothendieck rings are cluster algebras of finite type.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.