简系量子仿射代数上的实简单模和簇代数的范畴

IF 0.8 2区 数学 Q2 MATHEMATICS
Bing Duan , Ralf Schiffler
{"title":"简系量子仿射代数上的实简单模和簇代数的范畴","authors":"Bing Duan ,&nbsp;Ralf Schiffler","doi":"10.1016/j.jalgebra.2025.07.043","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>C</mi></math></span> be the category of finite-dimensional modules over a simply-laced quantum affine algebra <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>. For any height function <em>ξ</em> and <span><math><mi>ℓ</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>1</mn></mrow></msub></math></span>, we introduce certain subcategories <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> of <span><math><mi>C</mi></math></span>, and prove that the quantum Grothendieck ring <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup><mo>)</mo></math></span> of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> admits a quantum cluster algebra structure. We classify the real prime simple modules (call them the Hernandez–Leclerc modules) in <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> in terms of their highest <em>l</em>-weight monomials by relating this subcategory <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> to the cluster category <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> of the Dynkin quiver given by <em>ξ</em>. For any <em>ℓ</em>, we formulate the modified Hernandez-Leclerc conjectures, and prove them for the subcategories <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> whose Grothendieck rings are cluster algebras of finite type.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 608-672"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real simple modules over simply-laced quantum affine algebras and categorifications of cluster algebras\",\"authors\":\"Bing Duan ,&nbsp;Ralf Schiffler\",\"doi\":\"10.1016/j.jalgebra.2025.07.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>C</mi></math></span> be the category of finite-dimensional modules over a simply-laced quantum affine algebra <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>. For any height function <em>ξ</em> and <span><math><mi>ℓ</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>1</mn></mrow></msub></math></span>, we introduce certain subcategories <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> of <span><math><mi>C</mi></math></span>, and prove that the quantum Grothendieck ring <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup><mo>)</mo></math></span> of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> admits a quantum cluster algebra structure. We classify the real prime simple modules (call them the Hernandez–Leclerc modules) in <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> in terms of their highest <em>l</em>-weight monomials by relating this subcategory <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> to the cluster category <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> of the Dynkin quiver given by <em>ξ</em>. For any <em>ℓ</em>, we formulate the modified Hernandez-Leclerc conjectures, and prove them for the subcategories <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>≤</mo><mi>ξ</mi></mrow></msubsup></math></span> whose Grothendieck rings are cluster algebras of finite type.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 608-672\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004594\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004594","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设C为简系量子仿射代数Uq(g -)上有限维模的范畴。对于任意高度函数ξ,且ρ∈Z≥1,引入C的子范畴C ρ≤ξ,证明了C ρ≤ξ的量子Grothendieck环Kt(ρ≤ξ)存在量子簇代数结构。通过将子范畴C1≤ξ与由ξ给出的Dynkin颤振的簇范畴C1≤ξ联系起来,我们将C1≤ξ中的实素数简单模(称为Hernandez-Leclerc模)根据其最高l权单项式进行分类。对于任意的n,我们给出了修正Hernandez-Leclerc猜想,并证明了C n≤ξ的子范畴,其Grothendieck环是有限型簇代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real simple modules over simply-laced quantum affine algebras and categorifications of cluster algebras
Let C be the category of finite-dimensional modules over a simply-laced quantum affine algebra Uq(gˆ). For any height function ξ and Z1, we introduce certain subcategories Cξ of C, and prove that the quantum Grothendieck ring Kt(Cξ) of Cξ admits a quantum cluster algebra structure. We classify the real prime simple modules (call them the Hernandez–Leclerc modules) in C1ξ in terms of their highest l-weight monomials by relating this subcategory C1ξ to the cluster category C1ξ of the Dynkin quiver given by ξ. For any , we formulate the modified Hernandez-Leclerc conjectures, and prove them for the subcategories Cξ whose Grothendieck rings are cluster algebras of finite type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信