{"title":"关于循环图的半传递可定向性","authors":"Eshwar Srinivasan, Ramesh Hariharasubramanian","doi":"10.1016/j.dam.2025.08.025","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is said to be <em>word-representable</em> if a word <span><math><mi>w</mi></math></span> can be formed using the letters of the alphabet <span><math><mi>V</mi></math></span> such that for every pair of vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>, <span><math><mrow><mi>x</mi><mi>y</mi><mo>∈</mo><mi>E</mi></mrow></math></span> if and only if <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> alternate in <span><math><mi>w</mi></math></span>. A <em>semi-transitive</em> orientation is an acyclic directed graph where for any directed path <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>→</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>→</mo><mo>⋯</mo><mo>→</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>, <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span> either there is no arc between <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> or for all <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>m</mi></mrow></math></span> there is an arc between <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>. An undirected graph is semi-transitive if it admits a semi-transitive orientation. For given positive integers <span><math><mrow><mi>n</mi><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>, we consider the undirected circulant graph with set of vertices <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></math></span> and the set of edges <span><math><mrow><mo>{</mo><mi>i</mi><mi>j</mi><mo>∣</mo><mrow><mo>|</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>|</mo></mrow><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is in <span><math><mrow><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>}</mo></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo><</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></math></span>. Recently, Kitaev and Pyatkin have shown that every 4-regular circulant graph is semi-transitive. Further, they have posed an open problem regarding the semi-transitive orientability of circulant graphs for which the elements of the set <span><math><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></math></span> are consecutive positive integers.</div><div>This paper examines the semi-transitive orientability of circulant graphs and shows that certain circulant graphs are semi-transitive while others are not, given specific assumptions. Additionally, we provide an upper bound on the representation number of certain <span><math><mi>k</mi></math></span>-regular circulant graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 498-509"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On semi-transitive orientability of circulant graphs\",\"authors\":\"Eshwar Srinivasan, Ramesh Hariharasubramanian\",\"doi\":\"10.1016/j.dam.2025.08.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is said to be <em>word-representable</em> if a word <span><math><mi>w</mi></math></span> can be formed using the letters of the alphabet <span><math><mi>V</mi></math></span> such that for every pair of vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>, <span><math><mrow><mi>x</mi><mi>y</mi><mo>∈</mo><mi>E</mi></mrow></math></span> if and only if <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> alternate in <span><math><mi>w</mi></math></span>. A <em>semi-transitive</em> orientation is an acyclic directed graph where for any directed path <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>→</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>→</mo><mo>⋯</mo><mo>→</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>, <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span> either there is no arc between <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> or for all <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>m</mi></mrow></math></span> there is an arc between <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>. An undirected graph is semi-transitive if it admits a semi-transitive orientation. For given positive integers <span><math><mrow><mi>n</mi><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>, we consider the undirected circulant graph with set of vertices <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></math></span> and the set of edges <span><math><mrow><mo>{</mo><mi>i</mi><mi>j</mi><mo>∣</mo><mrow><mo>|</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>|</mo></mrow><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is in <span><math><mrow><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>}</mo></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo><</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></math></span>. Recently, Kitaev and Pyatkin have shown that every 4-regular circulant graph is semi-transitive. Further, they have posed an open problem regarding the semi-transitive orientability of circulant graphs for which the elements of the set <span><math><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></math></span> are consecutive positive integers.</div><div>This paper examines the semi-transitive orientability of circulant graphs and shows that certain circulant graphs are semi-transitive while others are not, given specific assumptions. Additionally, we provide an upper bound on the representation number of certain <span><math><mi>k</mi></math></span>-regular circulant graphs.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"377 \",\"pages\":\"Pages 498-509\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004664\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004664","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On semi-transitive orientability of circulant graphs
A graph is said to be word-representable if a word can be formed using the letters of the alphabet such that for every pair of vertices and , if and only if and alternate in . A semi-transitive orientation is an acyclic directed graph where for any directed path , either there is no arc between and or for all there is an arc between and . An undirected graph is semi-transitive if it admits a semi-transitive orientation. For given positive integers , we consider the undirected circulant graph with set of vertices and the set of edges is in , where . Recently, Kitaev and Pyatkin have shown that every 4-regular circulant graph is semi-transitive. Further, they have posed an open problem regarding the semi-transitive orientability of circulant graphs for which the elements of the set are consecutive positive integers.
This paper examines the semi-transitive orientability of circulant graphs and shows that certain circulant graphs are semi-transitive while others are not, given specific assumptions. Additionally, we provide an upper bound on the representation number of certain -regular circulant graphs.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.