具有视觉可解释性的混凝土裂缝分割中的fourier -混合专家YOLO

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Haochen Chang , David Bassir , Anicet Barrios , Gongfa Chen
{"title":"具有视觉可解释性的混凝土裂缝分割中的fourier -混合专家YOLO","authors":"Haochen Chang ,&nbsp;David Bassir ,&nbsp;Anicet Barrios ,&nbsp;Gongfa Chen","doi":"10.1016/j.autcon.2025.106452","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate crack segmentation is essential for structural health monitoring, yet most deep-learning studies treat the task as binary and struggle with varied morphologies. This paper introduces FMOE-YOLO, a Fourier-enhanced Mixture-of-Experts extension of YOLO that integrates a Multi-branched Auxiliary Feature Pyramid Network (MAFPN) and an SPPF_LSKA large-kernel attention head. The Fourier expert captures high-frequency crack cues, while MAFPN with LSKA supplies rich multiscale context. Experiments on three datasets of rising difficulty — Individual, Single-Crack (four classes), and Complex (six classes) — show consistent gains over standard YOLOv8. On the Single-Crack set the model attains 86.2% [email protected], improving performance by 4.7 percentage points. t-SNE and UMAP embeddings reveal tighter, better separated clusters, and Grad-CAM maps confirm sharper crack localization, demonstrating enhanced interpretability. The proposed approach offers strong potential for real-world monitoring, effectively handling diverse crack morphologies and challenging geometric conditions.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"179 ","pages":"Article 106452"},"PeriodicalIF":11.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier-Mixture of Experts YOLO for concrete crack segmentation with visual interpretability\",\"authors\":\"Haochen Chang ,&nbsp;David Bassir ,&nbsp;Anicet Barrios ,&nbsp;Gongfa Chen\",\"doi\":\"10.1016/j.autcon.2025.106452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate crack segmentation is essential for structural health monitoring, yet most deep-learning studies treat the task as binary and struggle with varied morphologies. This paper introduces FMOE-YOLO, a Fourier-enhanced Mixture-of-Experts extension of YOLO that integrates a Multi-branched Auxiliary Feature Pyramid Network (MAFPN) and an SPPF_LSKA large-kernel attention head. The Fourier expert captures high-frequency crack cues, while MAFPN with LSKA supplies rich multiscale context. Experiments on three datasets of rising difficulty — Individual, Single-Crack (four classes), and Complex (six classes) — show consistent gains over standard YOLOv8. On the Single-Crack set the model attains 86.2% [email protected], improving performance by 4.7 percentage points. t-SNE and UMAP embeddings reveal tighter, better separated clusters, and Grad-CAM maps confirm sharper crack localization, demonstrating enhanced interpretability. The proposed approach offers strong potential for real-world monitoring, effectively handling diverse crack morphologies and challenging geometric conditions.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"179 \",\"pages\":\"Article 106452\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525004923\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525004923","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

准确的裂纹分割对于结构健康监测至关重要,但大多数深度学习研究都将其视为二元任务,并且与各种形态作斗争。FMOE-YOLO是YOLO的傅里叶增强混合专家扩展,它集成了多分支辅助特征金字塔网络(MAFPN)和SPPF_LSKA大核关注头。傅里叶专家捕获高频裂纹线索,而LSKA的MAFPN提供丰富的多尺度上下文。在难度不断上升的三个数据集上进行的实验——个体、单裂纹(四类)和复杂(六类)——显示出与标准YOLOv8相比的一致增益。在Single-Crack设置下,模型达到86.2% [email protected],性能提高了4.7个百分点。t-SNE和UMAP嵌入显示了更紧密、更分离的簇,而Grad-CAM地图证实了更清晰的裂缝定位,证明了更高的可解释性。所提出的方法为现实世界的监测提供了强大的潜力,有效地处理各种裂纹形态和具有挑战性的几何条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fourier-Mixture of Experts YOLO for concrete crack segmentation with visual interpretability

Fourier-Mixture of Experts YOLO for concrete crack segmentation with visual interpretability
Accurate crack segmentation is essential for structural health monitoring, yet most deep-learning studies treat the task as binary and struggle with varied morphologies. This paper introduces FMOE-YOLO, a Fourier-enhanced Mixture-of-Experts extension of YOLO that integrates a Multi-branched Auxiliary Feature Pyramid Network (MAFPN) and an SPPF_LSKA large-kernel attention head. The Fourier expert captures high-frequency crack cues, while MAFPN with LSKA supplies rich multiscale context. Experiments on three datasets of rising difficulty — Individual, Single-Crack (four classes), and Complex (six classes) — show consistent gains over standard YOLOv8. On the Single-Crack set the model attains 86.2% [email protected], improving performance by 4.7 percentage points. t-SNE and UMAP embeddings reveal tighter, better separated clusters, and Grad-CAM maps confirm sharper crack localization, demonstrating enhanced interpretability. The proposed approach offers strong potential for real-world monitoring, effectively handling diverse crack morphologies and challenging geometric conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信