小鼠急性缺氧诱导神经元激活的全脑定位:c-Fos免疫荧光研究

IF 2.9 Q3 NEUROSCIENCES
Xingyao Yu , Pai Pang , Tao Liu , Xiufang Jiang , Jiayi Zhang , Xiangpei Yue , Jianjun Guo , Xiang Cheng , Tong Zhao , Yongqi Zhao , Zhonghua Dai , Lingling Zhu
{"title":"小鼠急性缺氧诱导神经元激活的全脑定位:c-Fos免疫荧光研究","authors":"Xingyao Yu ,&nbsp;Pai Pang ,&nbsp;Tao Liu ,&nbsp;Xiufang Jiang ,&nbsp;Jiayi Zhang ,&nbsp;Xiangpei Yue ,&nbsp;Jianjun Guo ,&nbsp;Xiang Cheng ,&nbsp;Tong Zhao ,&nbsp;Yongqi Zhao ,&nbsp;Zhonghua Dai ,&nbsp;Lingling Zhu","doi":"10.1016/j.ibneur.2025.08.013","DOIUrl":null,"url":null,"abstract":"<div><div>Acute hypobaric hypoxic exposure, defined as rapid ascent to high altitude with brief sojourn, triggers profound physiological adaptations while increasing risks of acute mountain sickness (e.g., gastrointestinal distress, pulmonary/cerebral edema). Beyond these somatic manifestations, cognitive deficits frequently emerge under hypoxic stress, yet the neural substrates mediating these impairments remain poorly mapped. To systematically characterize hypoxia-induced brain activation patterns, we conducted whole-brain mapping of neuronal activity changes in mice exposed to acute hypobaric hypoxia versus normoxic controls using c-Fos immunofluorescence, a robust marker of neuronal activation. Our functional analysis focused on key brain regions governing: cardiorespiratory homeostasis, attention, memory, emotional processing, motivation and reward. Quantitative c-Fos mapping revealed increased neural activity in several brainstem nuclei and repressed neural activity in higher-order forebrain after exposure to 24 h-6000 m hypobaric hypoxia. These datas establish the first brain-wide map of hypoxia-responsive neural networks, providing mechanistic insights into physiological adaptation and cognitive vulnerability after acute hypobaric hypoxic exposure.</div></div>","PeriodicalId":13195,"journal":{"name":"IBRO Neuroscience Reports","volume":"19 ","pages":"Pages 519-531"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain-wide mapping of acute hypoxia-induced neuronal activation in mice: A c-Fos immunofluorescence study\",\"authors\":\"Xingyao Yu ,&nbsp;Pai Pang ,&nbsp;Tao Liu ,&nbsp;Xiufang Jiang ,&nbsp;Jiayi Zhang ,&nbsp;Xiangpei Yue ,&nbsp;Jianjun Guo ,&nbsp;Xiang Cheng ,&nbsp;Tong Zhao ,&nbsp;Yongqi Zhao ,&nbsp;Zhonghua Dai ,&nbsp;Lingling Zhu\",\"doi\":\"10.1016/j.ibneur.2025.08.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acute hypobaric hypoxic exposure, defined as rapid ascent to high altitude with brief sojourn, triggers profound physiological adaptations while increasing risks of acute mountain sickness (e.g., gastrointestinal distress, pulmonary/cerebral edema). Beyond these somatic manifestations, cognitive deficits frequently emerge under hypoxic stress, yet the neural substrates mediating these impairments remain poorly mapped. To systematically characterize hypoxia-induced brain activation patterns, we conducted whole-brain mapping of neuronal activity changes in mice exposed to acute hypobaric hypoxia versus normoxic controls using c-Fos immunofluorescence, a robust marker of neuronal activation. Our functional analysis focused on key brain regions governing: cardiorespiratory homeostasis, attention, memory, emotional processing, motivation and reward. Quantitative c-Fos mapping revealed increased neural activity in several brainstem nuclei and repressed neural activity in higher-order forebrain after exposure to 24 h-6000 m hypobaric hypoxia. These datas establish the first brain-wide map of hypoxia-responsive neural networks, providing mechanistic insights into physiological adaptation and cognitive vulnerability after acute hypobaric hypoxic exposure.</div></div>\",\"PeriodicalId\":13195,\"journal\":{\"name\":\"IBRO Neuroscience Reports\",\"volume\":\"19 \",\"pages\":\"Pages 519-531\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBRO Neuroscience Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667242125001290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBRO Neuroscience Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667242125001290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

急性低压缺氧暴露,定义为快速上升到高海拔并短暂停留,触发深刻的生理适应,同时增加急性高原病的风险(例如,胃肠道窘迫,肺/脑水肿)。除了这些躯体表现,认知缺陷经常在缺氧胁迫下出现,然而介导这些损伤的神经基质仍然知之甚少。为了系统地表征缺氧诱导的大脑激活模式,我们使用c-Fos免疫荧光(一种强大的神经元激活标记物)对暴露于急性低压缺氧的小鼠与常压对照组的神经元活动变化进行了全脑测绘。我们的功能分析集中在关键的大脑区域控制:心肺稳态,注意力,记忆,情绪处理,动机和奖励。定量c-Fos图谱显示,暴露于24 h-6000 m低压缺氧后,几个脑干核的神经活动增加,高阶前脑的神经活动受到抑制。这些数据建立了第一个全脑缺氧反应神经网络图谱,为急性低压缺氧暴露后的生理适应和认知脆弱性提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain-wide mapping of acute hypoxia-induced neuronal activation in mice: A c-Fos immunofluorescence study
Acute hypobaric hypoxic exposure, defined as rapid ascent to high altitude with brief sojourn, triggers profound physiological adaptations while increasing risks of acute mountain sickness (e.g., gastrointestinal distress, pulmonary/cerebral edema). Beyond these somatic manifestations, cognitive deficits frequently emerge under hypoxic stress, yet the neural substrates mediating these impairments remain poorly mapped. To systematically characterize hypoxia-induced brain activation patterns, we conducted whole-brain mapping of neuronal activity changes in mice exposed to acute hypobaric hypoxia versus normoxic controls using c-Fos immunofluorescence, a robust marker of neuronal activation. Our functional analysis focused on key brain regions governing: cardiorespiratory homeostasis, attention, memory, emotional processing, motivation and reward. Quantitative c-Fos mapping revealed increased neural activity in several brainstem nuclei and repressed neural activity in higher-order forebrain after exposure to 24 h-6000 m hypobaric hypoxia. These datas establish the first brain-wide map of hypoxia-responsive neural networks, providing mechanistic insights into physiological adaptation and cognitive vulnerability after acute hypobaric hypoxic exposure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IBRO Neuroscience Reports
IBRO Neuroscience Reports Neuroscience-Neuroscience (all)
CiteScore
2.80
自引率
0.00%
发文量
99
审稿时长
14 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信