将沸石与MOF玻璃相结合,构建晶体-玻璃复合膜,提高氢分离性能

IF 9.5
Hongbin Wang , Caiyan Zhang , Lili Fan , Zixi Kang , Daofeng Sun
{"title":"将沸石与MOF玻璃相结合,构建晶体-玻璃复合膜,提高氢分离性能","authors":"Hongbin Wang ,&nbsp;Caiyan Zhang ,&nbsp;Lili Fan ,&nbsp;Zixi Kang ,&nbsp;Daofeng Sun","doi":"10.1016/j.advmem.2025.100164","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic framework glasses (MOF-a<sub>g</sub>), formed through melt-quenching crystalline MOFs, have emerged as promising membrane materials owing to their processability and retained porosity. While MOF-a<sub>g</sub> membranes exhibit exceptional sieving selectivity, their compromised permeability has driven the development of crystal-glass composite (CGC) membranes, where crystalline porous fillers are embedded in MOF-a<sub>g</sub> matrices. Nevertheless, the high-temperature melt-quenching process poses a significant challenge to the thermal stability of porous fillers, inducing structural degradation of thermally labile fillers and severely compromising gas permeability. In this study, we report the rational design of FAU-type zeolite-embedded ZIF-62-a<sub>g</sub> composite membranes to improve hydrogen separation performance. The optimized 20-FAU-ZIF-62-a<sub>g</sub> CGC membrane (20 ​wt% zeolite filler loading) exhibits the H<sub>2</sub> permeability of 2516 Barrer and H<sub>2</sub>/CH<sub>4</sub> selectivity of 52.4 for single-gas permeation, representing 179 ​% and 45 ​% improvements over the pristine ZIF-62-a<sub>g</sub> membrane. The zeolite incorporation not only improves porosity but also enhances mechanical strength, evidenced by the enhanced Young's modulus (85 ​%) and hardness (55 ​%). Further processing with an alternative zeolite filler (MFI-type zeolite) or an alternative MOF-a<sub>g</sub> matrix (TIF-4) validates the universality of zeolite-MOF-a<sub>g</sub> CGC membranes in improving performance. This study provides a versatile platform for fabricating robust MOF-a<sub>g</sub>-based membranes with improved separation performance.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100164"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining zeolite with MOF glass to construct crystal-glass composite membranes for improved hydrogen separation\",\"authors\":\"Hongbin Wang ,&nbsp;Caiyan Zhang ,&nbsp;Lili Fan ,&nbsp;Zixi Kang ,&nbsp;Daofeng Sun\",\"doi\":\"10.1016/j.advmem.2025.100164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal-organic framework glasses (MOF-a<sub>g</sub>), formed through melt-quenching crystalline MOFs, have emerged as promising membrane materials owing to their processability and retained porosity. While MOF-a<sub>g</sub> membranes exhibit exceptional sieving selectivity, their compromised permeability has driven the development of crystal-glass composite (CGC) membranes, where crystalline porous fillers are embedded in MOF-a<sub>g</sub> matrices. Nevertheless, the high-temperature melt-quenching process poses a significant challenge to the thermal stability of porous fillers, inducing structural degradation of thermally labile fillers and severely compromising gas permeability. In this study, we report the rational design of FAU-type zeolite-embedded ZIF-62-a<sub>g</sub> composite membranes to improve hydrogen separation performance. The optimized 20-FAU-ZIF-62-a<sub>g</sub> CGC membrane (20 ​wt% zeolite filler loading) exhibits the H<sub>2</sub> permeability of 2516 Barrer and H<sub>2</sub>/CH<sub>4</sub> selectivity of 52.4 for single-gas permeation, representing 179 ​% and 45 ​% improvements over the pristine ZIF-62-a<sub>g</sub> membrane. The zeolite incorporation not only improves porosity but also enhances mechanical strength, evidenced by the enhanced Young's modulus (85 ​%) and hardness (55 ​%). Further processing with an alternative zeolite filler (MFI-type zeolite) or an alternative MOF-a<sub>g</sub> matrix (TIF-4) validates the universality of zeolite-MOF-a<sub>g</sub> CGC membranes in improving performance. This study provides a versatile platform for fabricating robust MOF-a<sub>g</sub>-based membranes with improved separation performance.</div></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"5 \",\"pages\":\"Article 100164\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823425000387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架玻璃(mof -organic framework glass, MOF-ag)是由熔融淬火结晶mof形成的,由于其可加工性和保留的孔隙率而成为有前途的膜材料。虽然MOF-ag膜表现出优异的筛分选择性,但其渗透性的降低推动了晶体玻璃复合材料(CGC)膜的发展,其中晶体多孔填料嵌入MOF-ag基质中。然而,高温熔体淬火工艺对多孔填料的热稳定性提出了重大挑战,导致热不稳定填料的结构降解,严重影响透气性。在本研究中,我们报道了合理设计fu型沸石包埋的ZIF-62-ag复合膜以提高氢分离性能。优化后的20- fu -ZIF-62-ag CGC膜(沸石填充量为20%)的H2渗透率为2516 Barrer, H2/CH4选择性为52.4,比原始的ZIF-62-ag膜分别提高了179%和45%。沸石的掺入不仅改善了孔隙率,而且提高了机械强度,杨氏模量(85%)和硬度(55%)得到了提高。采用替代沸石填料(mfi型沸石)或替代MOF-ag基质(TIF-4)进一步处理,验证了沸石-MOF-ag CGC膜在提高性能方面的通用性。这项研究提供了一个通用的平台来制造坚固的mof -ag基膜,具有更好的分离性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combining zeolite with MOF glass to construct crystal-glass composite membranes for improved hydrogen separation

Combining zeolite with MOF glass to construct crystal-glass composite membranes for improved hydrogen separation
Metal-organic framework glasses (MOF-ag), formed through melt-quenching crystalline MOFs, have emerged as promising membrane materials owing to their processability and retained porosity. While MOF-ag membranes exhibit exceptional sieving selectivity, their compromised permeability has driven the development of crystal-glass composite (CGC) membranes, where crystalline porous fillers are embedded in MOF-ag matrices. Nevertheless, the high-temperature melt-quenching process poses a significant challenge to the thermal stability of porous fillers, inducing structural degradation of thermally labile fillers and severely compromising gas permeability. In this study, we report the rational design of FAU-type zeolite-embedded ZIF-62-ag composite membranes to improve hydrogen separation performance. The optimized 20-FAU-ZIF-62-ag CGC membrane (20 ​wt% zeolite filler loading) exhibits the H2 permeability of 2516 Barrer and H2/CH4 selectivity of 52.4 for single-gas permeation, representing 179 ​% and 45 ​% improvements over the pristine ZIF-62-ag membrane. The zeolite incorporation not only improves porosity but also enhances mechanical strength, evidenced by the enhanced Young's modulus (85 ​%) and hardness (55 ​%). Further processing with an alternative zeolite filler (MFI-type zeolite) or an alternative MOF-ag matrix (TIF-4) validates the universality of zeolite-MOF-ag CGC membranes in improving performance. This study provides a versatile platform for fabricating robust MOF-ag-based membranes with improved separation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信