混合交通中自动驾驶汽车变道策略与社会困境的仿真研究

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Nikita V. Bykov, Maksim A. Kostrov
{"title":"混合交通中自动驾驶汽车变道策略与社会困境的仿真研究","authors":"Nikita V. Bykov,&nbsp;Maksim A. Kostrov","doi":"10.1016/j.physa.2025.130909","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of different lane-changing strategies of autonomous vehicles (AVs) on traffic dynamics and social efficiency in mixed traffic conditions. We introduce a multi-agent traffic model based on a cellular automaton framework, incorporating human-driven vehicles (HDVs) and three types of AVs: non-lane-changing (AV), cooperative (AV-C), and permissive (AV-D). Each AV type follows distinct longitudinal and lateral rules under Adaptive Cruise Control (ACC) or Cooperative ACC (CACC). The simulation results reveal that non-lane-changing AVs maximize traffic flow but struggle with obstacle avoidance. AV-C agents maintain platoon integrity, while AV-D agents improve maneuverability at the cost of platoon stability. We analyze the emergence of social dilemmas using the Social Efficiency Deficit (SED) metric and identify conditions under which individual rationality conflicts with global traffic performance. The findings highlight the need for hybrid control strategies and external incentives to support early-stage AV deployment and ensure cooperative equilibria.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"677 ","pages":"Article 130909"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lane-changing strategies of autonomous vehicles and social dilemmas in mixed traffic: A simulation study\",\"authors\":\"Nikita V. Bykov,&nbsp;Maksim A. Kostrov\",\"doi\":\"10.1016/j.physa.2025.130909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the impact of different lane-changing strategies of autonomous vehicles (AVs) on traffic dynamics and social efficiency in mixed traffic conditions. We introduce a multi-agent traffic model based on a cellular automaton framework, incorporating human-driven vehicles (HDVs) and three types of AVs: non-lane-changing (AV), cooperative (AV-C), and permissive (AV-D). Each AV type follows distinct longitudinal and lateral rules under Adaptive Cruise Control (ACC) or Cooperative ACC (CACC). The simulation results reveal that non-lane-changing AVs maximize traffic flow but struggle with obstacle avoidance. AV-C agents maintain platoon integrity, while AV-D agents improve maneuverability at the cost of platoon stability. We analyze the emergence of social dilemmas using the Social Efficiency Deficit (SED) metric and identify conditions under which individual rationality conflicts with global traffic performance. The findings highlight the need for hybrid control strategies and external incentives to support early-stage AV deployment and ensure cooperative equilibria.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"677 \",\"pages\":\"Article 130909\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125005618\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125005618","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了混合交通条件下自动驾驶汽车不同变道策略对交通动态和社会效率的影响。我们引入了一个基于元胞自动机框架的多智能体交通模型,将人类驾驶车辆(hdv)和三种类型的自动驾驶汽车:非变道(AV)、合作(AV- c)和许可(AV- d)结合在一起。在自适应巡航控制(ACC)或合作巡航控制(CACC)下,每个自动驾驶类型都遵循不同的纵向和横向规则。仿真结果表明,无变道自动驾驶汽车能够最大限度地提高交通流量,但在避障方面存在一定的困难。AV-C毒剂维持排的完整性,而AV-D毒剂以牺牲排的稳定性为代价提高机动性。我们使用社会效率赤字(SED)指标分析了社会困境的出现,并确定了个人理性与全球交通绩效冲突的条件。研究结果强调了混合控制策略和外部激励的必要性,以支持早期自动驾驶部署并确保合作平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lane-changing strategies of autonomous vehicles and social dilemmas in mixed traffic: A simulation study
This study investigates the impact of different lane-changing strategies of autonomous vehicles (AVs) on traffic dynamics and social efficiency in mixed traffic conditions. We introduce a multi-agent traffic model based on a cellular automaton framework, incorporating human-driven vehicles (HDVs) and three types of AVs: non-lane-changing (AV), cooperative (AV-C), and permissive (AV-D). Each AV type follows distinct longitudinal and lateral rules under Adaptive Cruise Control (ACC) or Cooperative ACC (CACC). The simulation results reveal that non-lane-changing AVs maximize traffic flow but struggle with obstacle avoidance. AV-C agents maintain platoon integrity, while AV-D agents improve maneuverability at the cost of platoon stability. We analyze the emergence of social dilemmas using the Social Efficiency Deficit (SED) metric and identify conditions under which individual rationality conflicts with global traffic performance. The findings highlight the need for hybrid control strategies and external incentives to support early-stage AV deployment and ensure cooperative equilibria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信