{"title":"维奇高阶定理","authors":"Jiahao Qiu, Xiangdong Ye","doi":"10.1016/j.jde.2025.113707","DOIUrl":null,"url":null,"abstract":"<div><div>For an abelian group <em>G</em>, <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <span><math><mi>ε</mi><mo>=</mo><mo>(</mo><mi>ε</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>ε</mi><mo>(</mo><mi>d</mi><mo>)</mo><mo>)</mo><mo>∈</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span>, let <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>⋅</mo><mi>ε</mi><mo>=</mo><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msubsup><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>ε</mi><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup></math></span>. In this paper, it is shown that for a minimal system <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> with <em>G</em> being abelian, <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>RP</mi></mrow><mrow><mo>[</mo><mi>d</mi><mo>]</mo></mrow></msup></math></span> if and only if there exists a sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub><mo>⊆</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and points <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>∈</mo><mi>X</mi><mo>,</mo><mi>ε</mi><mo>∈</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> with <span><math><msub><mrow><mi>z</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>→</mo></mrow></mover></mrow></msub><mo>=</mo><mi>y</mi></math></span> such that for every <span><math><mi>ε</mi><mo>∈</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>﹨</mo><mo>{</mo><mover><mrow><mn>0</mn></mrow><mrow><mo>→</mo></mrow></mover><mo>}</mo></math></span>,<span><span><span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mo>(</mo><msub><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>⋅</mo><mi>ε</mi><mo>)</mo><mi>x</mi><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>ε</mi></mrow></msub><mspace></mspace><mrow><mi>and</mi></mrow><mspace></mspace><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><msup><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>⋅</mo><mi>ε</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>z</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>→</mo></mrow></mover></mrow></msub><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>→</mo></mrow></mover><mo>−</mo><mi>ε</mi></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msup><mrow><mi>RP</mi></mrow><mrow><mo>[</mo><mi>d</mi><mo>]</mo></mrow></msup></math></span> is the regionally proximal relation of order <em>d</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"449 ","pages":"Article 113707"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Veech's theorem of higher order\",\"authors\":\"Jiahao Qiu, Xiangdong Ye\",\"doi\":\"10.1016/j.jde.2025.113707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For an abelian group <em>G</em>, <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <span><math><mi>ε</mi><mo>=</mo><mo>(</mo><mi>ε</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>ε</mi><mo>(</mo><mi>d</mi><mo>)</mo><mo>)</mo><mo>∈</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span>, let <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>⋅</mo><mi>ε</mi><mo>=</mo><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msubsup><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>ε</mi><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup></math></span>. In this paper, it is shown that for a minimal system <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> with <em>G</em> being abelian, <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>RP</mi></mrow><mrow><mo>[</mo><mi>d</mi><mo>]</mo></mrow></msup></math></span> if and only if there exists a sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub><mo>⊆</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and points <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>∈</mo><mi>X</mi><mo>,</mo><mi>ε</mi><mo>∈</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> with <span><math><msub><mrow><mi>z</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>→</mo></mrow></mover></mrow></msub><mo>=</mo><mi>y</mi></math></span> such that for every <span><math><mi>ε</mi><mo>∈</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>﹨</mo><mo>{</mo><mover><mrow><mn>0</mn></mrow><mrow><mo>→</mo></mrow></mover><mo>}</mo></math></span>,<span><span><span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mo>(</mo><msub><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>⋅</mo><mi>ε</mi><mo>)</mo><mi>x</mi><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>ε</mi></mrow></msub><mspace></mspace><mrow><mi>and</mi></mrow><mspace></mspace><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><msup><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>⋅</mo><mi>ε</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>z</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>→</mo></mrow></mover></mrow></msub><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>→</mo></mrow></mover><mo>−</mo><mi>ε</mi></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msup><mrow><mi>RP</mi></mrow><mrow><mo>[</mo><mi>d</mi><mo>]</mo></mrow></msup></math></span> is the regionally proximal relation of order <em>d</em>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"449 \",\"pages\":\"Article 113707\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962500734X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500734X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
阿贝尔群G, G→= (g1,…,gd)∈gd和ε=(ε(1),…,ε(d))∈{0,1}d,让G→⋅ε=∏i = 1 dgiε(我)。证明了当且仅当存在一个序列{G→n}n∈n≥≥Gd,点zε∈X,ε∈{0,1}d且z0→=y,使得对于每一个ε∈{0,1}d\{0→},limn→∞(G→n·ε) X =zε,limn→∞(G→n·ε)−1z1→=z1→−ε,其中RP[d]为d阶的区域近端关系。
For an abelian group G, and , let . In this paper, it is shown that for a minimal system with G being abelian, if and only if there exists a sequence and points with such that for every , where is the regionally proximal relation of order d.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics