一般光滑有界区域泊松-玻尔兹曼型方程边界层解的渐近分析

IF 2.3 2区 数学 Q1 MATHEMATICS
Jhih-Hong Lyu , Tai-Chia Lin
{"title":"一般光滑有界区域泊松-玻尔兹曼型方程边界层解的渐近分析","authors":"Jhih-Hong Lyu ,&nbsp;Tai-Chia Lin","doi":"10.1016/j.jde.2025.113692","DOIUrl":null,"url":null,"abstract":"<div><div>We study the boundary layer solution to singular perturbation problems involving Poisson–Boltzmann (PB) type equations with a small parameter <em>ϵ</em> in general bounded smooth domains (including multiply connected domains) under the Robin boundary condition. The PB type equations include the classical PB, modified PB and charge-conserving PB (CCPB) equations, which are mathematical models for the electric potential and ion distributions. The CCPB equations present particular analytical challenges due to their nonlocal nonlinearity introduced through integral terms enforcing charge conservation. Using the principal coordinate system, exponential-type estimates and the method of moving planes, we rigorously prove asymptotic expansions of boundary layer solutions throughout the whole domain. The solution domain is partitioned into three characteristic regions based on the distance from the boundary:<ul><li><span>•</span><span><div>Region I, where the distance from the boundary is at most <span><math><mi>T</mi><msqrt><mrow><mi>ϵ</mi></mrow></msqrt></math></span>,</div></span></li><li><span>•</span><span><div>Region II, where the distance ranges between <span><math><mi>T</mi><msqrt><mrow><mi>ϵ</mi></mrow></msqrt></math></span> and <span><math><msup><mrow><mi>ϵ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span>,</div></span></li><li><span>•</span><span><div>Region III, where the distance is at least <span><math><msup><mrow><mi>ϵ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span>,</div></span></li></ul> for given parameters <span><math><mi>T</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>β</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>. In Region I, we derive second-order asymptotic formulas explicitly incorporating the effects of boundary mean curvature, while exponential decay estimates are established for Regions II and III. Furthermore, we obtain asymptotic expansions for key physical quantities, including the electric potential, electric field, total ionic charge density and total ionic charge, revealing how domain geometry regulates electrostatic interactions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"449 ","pages":"Article 113692"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic analysis of boundary layer solutions to Poisson–Boltzmann type equations in general bounded smooth domains\",\"authors\":\"Jhih-Hong Lyu ,&nbsp;Tai-Chia Lin\",\"doi\":\"10.1016/j.jde.2025.113692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the boundary layer solution to singular perturbation problems involving Poisson–Boltzmann (PB) type equations with a small parameter <em>ϵ</em> in general bounded smooth domains (including multiply connected domains) under the Robin boundary condition. The PB type equations include the classical PB, modified PB and charge-conserving PB (CCPB) equations, which are mathematical models for the electric potential and ion distributions. The CCPB equations present particular analytical challenges due to their nonlocal nonlinearity introduced through integral terms enforcing charge conservation. Using the principal coordinate system, exponential-type estimates and the method of moving planes, we rigorously prove asymptotic expansions of boundary layer solutions throughout the whole domain. The solution domain is partitioned into three characteristic regions based on the distance from the boundary:<ul><li><span>•</span><span><div>Region I, where the distance from the boundary is at most <span><math><mi>T</mi><msqrt><mrow><mi>ϵ</mi></mrow></msqrt></math></span>,</div></span></li><li><span>•</span><span><div>Region II, where the distance ranges between <span><math><mi>T</mi><msqrt><mrow><mi>ϵ</mi></mrow></msqrt></math></span> and <span><math><msup><mrow><mi>ϵ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span>,</div></span></li><li><span>•</span><span><div>Region III, where the distance is at least <span><math><msup><mrow><mi>ϵ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span>,</div></span></li></ul> for given parameters <span><math><mi>T</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>β</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>. In Region I, we derive second-order asymptotic formulas explicitly incorporating the effects of boundary mean curvature, while exponential decay estimates are established for Regions II and III. Furthermore, we obtain asymptotic expansions for key physical quantities, including the electric potential, electric field, total ionic charge density and total ionic charge, revealing how domain geometry regulates electrostatic interactions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"449 \",\"pages\":\"Article 113692\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007193\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007193","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Robin边界条件下,研究了一般有界光滑域(包括多连通域)中涉及小参数λ泊松-玻尔兹曼(PB)型方程的奇异摄动问题的边界层解。PB型方程包括经典PB方程、修正PB方程和电荷守恒PB方程(CCPB),它们是电势和离子分布的数学模型。CCPB方程由于其通过积分项引入的非局部非线性而提出了特殊的解析挑战。利用主坐标系、指数型估计和移动平面的方法,严格证明了整个区域边界层解的渐近展开式。根据到边界的距离将解域划分为三个特征区域:•区域I,其中到边界的距离最多为t御,•区域II,其中t御和ϵβ之间的距离范围,•区域III,其中距离至少为ϵβ,对于给定的参数T>;0和0<;β<1/2。在区域I中,我们导出了明确包含边界平均曲率影响的二阶渐近公式,而在区域II和III中建立了指数衰减估计。此外,我们得到了关键物理量的渐近展开式,包括电势、电场、总离子电荷密度和总离子电荷,揭示了区域几何如何调节静电相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic analysis of boundary layer solutions to Poisson–Boltzmann type equations in general bounded smooth domains
We study the boundary layer solution to singular perturbation problems involving Poisson–Boltzmann (PB) type equations with a small parameter ϵ in general bounded smooth domains (including multiply connected domains) under the Robin boundary condition. The PB type equations include the classical PB, modified PB and charge-conserving PB (CCPB) equations, which are mathematical models for the electric potential and ion distributions. The CCPB equations present particular analytical challenges due to their nonlocal nonlinearity introduced through integral terms enforcing charge conservation. Using the principal coordinate system, exponential-type estimates and the method of moving planes, we rigorously prove asymptotic expansions of boundary layer solutions throughout the whole domain. The solution domain is partitioned into three characteristic regions based on the distance from the boundary:
  • Region I, where the distance from the boundary is at most Tϵ,
  • Region II, where the distance ranges between Tϵ and ϵβ,
  • Region III, where the distance is at least ϵβ,
for given parameters T>0 and 0<β<1/2. In Region I, we derive second-order asymptotic formulas explicitly incorporating the effects of boundary mean curvature, while exponential decay estimates are established for Regions II and III. Furthermore, we obtain asymptotic expansions for key physical quantities, including the electric potential, electric field, total ionic charge density and total ionic charge, revealing how domain geometry regulates electrostatic interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信