非金属掺杂对MgH2脱氢热力学的影响

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Sunil Kumar , Subhamoy Char , A. Arya , P.S. Ghosh
{"title":"非金属掺杂对MgH2脱氢热力学的影响","authors":"Sunil Kumar ,&nbsp;Subhamoy Char ,&nbsp;A. Arya ,&nbsp;P.S. Ghosh","doi":"10.1016/j.physb.2025.417670","DOIUrl":null,"url":null,"abstract":"<div><div>MgH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a potential hydrogen storage material for future applications due to its high abundance, gravimetric and volumetric hydrogen storage density compared to other alternatives of metal hydrides. However, high desorption temperature is a major challenge that hinders its application. The present study investigates the effect of site-selective non-metal doping (2p-series: B, C, N, O, and F, and 3p-series: Si, P, S, and Cl) on formation enthalpy and structural stability of doped-MgH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> using density functional theory (DFT) based calculations. Screening factors such as desorption temperature, bulk modulus, and gravimetric density are considered for screening the dopant atoms, lowering the desorption temperature. Our screening finds doping B, C, N, Si, P, and S reduces the desorption temperature while preserving similar gravimetric density and Bulk modulus as of pristine MgH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Contrarily, doping of F, Cl, and O increases the desorption temperature. The C is the most composition-sensitive dopant among all. However, in B, C, Si, P doping, the change in bulk modulus is minimum (<span><math><mo>&lt;</mo></math></span> 5%) compared to the pristine MgH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Moreover, these dopants have the highest impact on the desorption temperature, making them the most preferable dopants among the list. A strong negative correlation between the electronegativity of dopants and the formation enthalpy is found for interstitial/H-substitutional doping sites. A detailed electronic structure analysis points out that the non-metal doping at interstitial/H-substitutional sites destabilizes the Mg–H bonds are suitable candidates to reduce the desorption temperature.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"716 ","pages":"Article 417670"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of non-metal doping on thermodynamics of dehydrogenation in MgH2\",\"authors\":\"Sunil Kumar ,&nbsp;Subhamoy Char ,&nbsp;A. Arya ,&nbsp;P.S. Ghosh\",\"doi\":\"10.1016/j.physb.2025.417670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MgH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a potential hydrogen storage material for future applications due to its high abundance, gravimetric and volumetric hydrogen storage density compared to other alternatives of metal hydrides. However, high desorption temperature is a major challenge that hinders its application. The present study investigates the effect of site-selective non-metal doping (2p-series: B, C, N, O, and F, and 3p-series: Si, P, S, and Cl) on formation enthalpy and structural stability of doped-MgH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> using density functional theory (DFT) based calculations. Screening factors such as desorption temperature, bulk modulus, and gravimetric density are considered for screening the dopant atoms, lowering the desorption temperature. Our screening finds doping B, C, N, Si, P, and S reduces the desorption temperature while preserving similar gravimetric density and Bulk modulus as of pristine MgH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Contrarily, doping of F, Cl, and O increases the desorption temperature. The C is the most composition-sensitive dopant among all. However, in B, C, Si, P doping, the change in bulk modulus is minimum (<span><math><mo>&lt;</mo></math></span> 5%) compared to the pristine MgH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Moreover, these dopants have the highest impact on the desorption temperature, making them the most preferable dopants among the list. A strong negative correlation between the electronegativity of dopants and the formation enthalpy is found for interstitial/H-substitutional doping sites. A detailed electronic structure analysis points out that the non-metal doping at interstitial/H-substitutional sites destabilizes the Mg–H bonds are suitable candidates to reduce the desorption temperature.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"716 \",\"pages\":\"Article 417670\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625007872\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625007872","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

与其他金属氢化物替代品相比,MgH2具有高丰度、重量和体积储氢密度,是未来应用的潜在储氢材料。然而,高解吸温度是阻碍其应用的主要挑战。本研究利用密度泛函理论(DFT)计算研究了位置选择性非金属掺杂(2p系列:B、C、N、O和F,以及3p系列:Si、P、S和Cl)对掺杂mgh2形成焓和结构稳定性的影响。考虑了脱附温度、体积模量和重量密度等筛选因素,筛选掺杂原子,降低脱附温度。我们的筛选发现,掺杂B、C、N、Si、P和S降低了解吸温度,同时保持了与原始MgH2相似的重量密度和体积模量。相反,F、Cl和O的掺杂提高了解吸温度。其中C是对成分最敏感的掺杂剂。然而,在B, C, Si, P掺杂下,与原始MgH2相比,体积模量的变化最小(< 5%)。此外,这些掺杂剂对解吸温度的影响最大,是列表中最理想的掺杂剂。在间隙/ h取代掺杂位点上,掺杂剂的电负性与形成焓之间存在很强的负相关关系。详细的电子结构分析指出,在间隙/ h取代位点掺杂非金属使Mg-H键不稳定是降低脱附温度的合适选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of non-metal doping on thermodynamics of dehydrogenation in MgH2
MgH2 is a potential hydrogen storage material for future applications due to its high abundance, gravimetric and volumetric hydrogen storage density compared to other alternatives of metal hydrides. However, high desorption temperature is a major challenge that hinders its application. The present study investigates the effect of site-selective non-metal doping (2p-series: B, C, N, O, and F, and 3p-series: Si, P, S, and Cl) on formation enthalpy and structural stability of doped-MgH2 using density functional theory (DFT) based calculations. Screening factors such as desorption temperature, bulk modulus, and gravimetric density are considered for screening the dopant atoms, lowering the desorption temperature. Our screening finds doping B, C, N, Si, P, and S reduces the desorption temperature while preserving similar gravimetric density and Bulk modulus as of pristine MgH2. Contrarily, doping of F, Cl, and O increases the desorption temperature. The C is the most composition-sensitive dopant among all. However, in B, C, Si, P doping, the change in bulk modulus is minimum (< 5%) compared to the pristine MgH2. Moreover, these dopants have the highest impact on the desorption temperature, making them the most preferable dopants among the list. A strong negative correlation between the electronegativity of dopants and the formation enthalpy is found for interstitial/H-substitutional doping sites. A detailed electronic structure analysis points out that the non-metal doping at interstitial/H-substitutional sites destabilizes the Mg–H bonds are suitable candidates to reduce the desorption temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信