基于粒子滤波和缠绕阶梯的作物-辐射耦合模型遥感数据的不确定性传播分析

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Amit Weinman , Raphael Linker , Offer Rozenstein
{"title":"基于粒子滤波和缠绕阶梯的作物-辐射耦合模型遥感数据的不确定性传播分析","authors":"Amit Weinman ,&nbsp;Raphael Linker ,&nbsp;Offer Rozenstein","doi":"10.1016/j.envsoft.2025.106645","DOIUrl":null,"url":null,"abstract":"<div><div>Crop models can serve as decision-support tools, but their uncertainty must be accounted for. While previous research has shown effective calibration of crop models using remote sensing (RS) data, the remaining uncertainty is rarely quantified. This study investigated the propagation of errors associated with RS data in a coupled crop-radiative transfer model in two steps. First, the results of a Particle Filter (PF) process were examined to assess the uncertainty of the model parameters and outputs. Next, the Winding Stairs (WS) method was used to quantify the contribution of crop model parameters uncertainty to the total model uncertainty. The results show that parameters related to crop growth rate contribute more to the variance of simulated Leaf Area Index (LAI) and yield than the phenology-related parameters. These findings can guide future research to improve the model reliability by focusing on calibrating the parameters with a higher impact on model outcome uncertainty.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106645"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty propagation analysis of remote sensing data in a coupled crop-radiative transfer model using particle filter and winding stairs\",\"authors\":\"Amit Weinman ,&nbsp;Raphael Linker ,&nbsp;Offer Rozenstein\",\"doi\":\"10.1016/j.envsoft.2025.106645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crop models can serve as decision-support tools, but their uncertainty must be accounted for. While previous research has shown effective calibration of crop models using remote sensing (RS) data, the remaining uncertainty is rarely quantified. This study investigated the propagation of errors associated with RS data in a coupled crop-radiative transfer model in two steps. First, the results of a Particle Filter (PF) process were examined to assess the uncertainty of the model parameters and outputs. Next, the Winding Stairs (WS) method was used to quantify the contribution of crop model parameters uncertainty to the total model uncertainty. The results show that parameters related to crop growth rate contribute more to the variance of simulated Leaf Area Index (LAI) and yield than the phenology-related parameters. These findings can guide future research to improve the model reliability by focusing on calibrating the parameters with a higher impact on model outcome uncertainty.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"193 \",\"pages\":\"Article 106645\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225003299\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003299","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

作物模型可以作为决策支持工具,但是必须考虑到它们的不确定性。虽然以前的研究表明利用遥感(RS)数据对作物模型进行了有效的校准,但剩余的不确定性很少被量化。本研究分两步研究了与RS数据相关的误差在作物-辐射耦合传输模型中的传播。首先,对粒子滤波(PF)过程的结果进行了检验,以评估模型参数和输出的不确定性。其次,采用螺旋阶梯法量化作物模型参数不确定性对模型总不确定性的贡献。结果表明,作物生长速率相关参数对模拟叶面积指数(LAI)和产量的影响大于物候相关参数。这些发现可以指导未来的研究,通过重点校准对模型结果不确定性影响较大的参数来提高模型的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uncertainty propagation analysis of remote sensing data in a coupled crop-radiative transfer model using particle filter and winding stairs

Uncertainty propagation analysis of remote sensing data in a coupled crop-radiative transfer model using particle filter and winding stairs
Crop models can serve as decision-support tools, but their uncertainty must be accounted for. While previous research has shown effective calibration of crop models using remote sensing (RS) data, the remaining uncertainty is rarely quantified. This study investigated the propagation of errors associated with RS data in a coupled crop-radiative transfer model in two steps. First, the results of a Particle Filter (PF) process were examined to assess the uncertainty of the model parameters and outputs. Next, the Winding Stairs (WS) method was used to quantify the contribution of crop model parameters uncertainty to the total model uncertainty. The results show that parameters related to crop growth rate contribute more to the variance of simulated Leaf Area Index (LAI) and yield than the phenology-related parameters. These findings can guide future research to improve the model reliability by focusing on calibrating the parameters with a higher impact on model outcome uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信