Hesamodin Mohammadian, Griffin Higgins, Samuel Ansong, Roozbeh Razavi-Far, Ali A. Ghorbani
{"title":"可解释的恶意软件检测通过集成图约简和学习技术","authors":"Hesamodin Mohammadian, Griffin Higgins, Samuel Ansong, Roozbeh Razavi-Far, Ali A. Ghorbani","doi":"10.1016/j.bdr.2025.100555","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, Control Flow Graphs and Function Call Graphs have gain attention in malware detection task due to their ability in representation the complex structural and functional behavior of programs. To better utilize these representations in malware detection and improve the detection performance, they have been paired with Graph Neural Networks (GNNs). However, the sheer size and complexity of these graph representation poses a significant challenge for researchers. At the same time, a simple binary classification provided by the GNN models is insufficient for malware analysts. To address these challenges, this paper integrates novel graph reduction techniques and GNN explainability in to a malware detection framework to enhance both efficiency and interpretability. Through our extensive evolution, we demonstrate that the proposed graph reduction technique significantly reduces the size and complexity of the input graphs, while maintaining the detection performance. Furthermore, the extracted important subgraphs using the GNNExplainer, provide better insights about the model's decision and help security experts with their further analysis.</div></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"41 ","pages":"Article 100555"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable malware detection through integrated graph reduction and learning techniques\",\"authors\":\"Hesamodin Mohammadian, Griffin Higgins, Samuel Ansong, Roozbeh Razavi-Far, Ali A. Ghorbani\",\"doi\":\"10.1016/j.bdr.2025.100555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, Control Flow Graphs and Function Call Graphs have gain attention in malware detection task due to their ability in representation the complex structural and functional behavior of programs. To better utilize these representations in malware detection and improve the detection performance, they have been paired with Graph Neural Networks (GNNs). However, the sheer size and complexity of these graph representation poses a significant challenge for researchers. At the same time, a simple binary classification provided by the GNN models is insufficient for malware analysts. To address these challenges, this paper integrates novel graph reduction techniques and GNN explainability in to a malware detection framework to enhance both efficiency and interpretability. Through our extensive evolution, we demonstrate that the proposed graph reduction technique significantly reduces the size and complexity of the input graphs, while maintaining the detection performance. Furthermore, the extracted important subgraphs using the GNNExplainer, provide better insights about the model's decision and help security experts with their further analysis.</div></div>\",\"PeriodicalId\":56017,\"journal\":{\"name\":\"Big Data Research\",\"volume\":\"41 \",\"pages\":\"Article 100555\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579625000504\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579625000504","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Explainable malware detection through integrated graph reduction and learning techniques
Recently, Control Flow Graphs and Function Call Graphs have gain attention in malware detection task due to their ability in representation the complex structural and functional behavior of programs. To better utilize these representations in malware detection and improve the detection performance, they have been paired with Graph Neural Networks (GNNs). However, the sheer size and complexity of these graph representation poses a significant challenge for researchers. At the same time, a simple binary classification provided by the GNN models is insufficient for malware analysts. To address these challenges, this paper integrates novel graph reduction techniques and GNN explainability in to a malware detection framework to enhance both efficiency and interpretability. Through our extensive evolution, we demonstrate that the proposed graph reduction technique significantly reduces the size and complexity of the input graphs, while maintaining the detection performance. Furthermore, the extracted important subgraphs using the GNNExplainer, provide better insights about the model's decision and help security experts with their further analysis.
期刊介绍:
The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic.
The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.