Aníbal López-Marín , Fernando Aguado , Rosa Martín-Rodríguez , Ana C. Perdigón
{"title":"机械活化对合成高电荷云母的结构、形态和质地的影响","authors":"Aníbal López-Marín , Fernando Aguado , Rosa Martín-Rodríguez , Ana C. Perdigón","doi":"10.1016/j.clay.2025.107969","DOIUrl":null,"url":null,"abstract":"<div><div>Dry grinding is an effective method for mechanically activating clay minerals to enhance their efficiency in various material applications. This is achieved by increasing the number of exposed active sites and the overall surface area through particle size reduction. Nevertheless, this method frequently results in a reduction of crystallinity or alterations in the structure of the clay material. In this context, trioctahedral clays with a high aluminum content exhibit greater structural resistance to degradation. Thus, this work aimed to employ dry grinding as an effective top-down nano-sintering method to obtain nano-clays from the high-charge mica family. High-charge micas are a group of trioctahedral synthetic micas with aluminum in the tetrahedral layer, widely studied because of their interesting adsorption properties. The novelty of this work laid in demonstrating that dry grinding can effectively reduce the particle size of high-charge micas to the nanoscale while preserving their structural integrity, representing a significant advancement in the controlled mechanical activation of trioctahedral clays without inducing amorphization. To reduce the risk of amorphization, gentle milling conditions were applied using a planetary ball mill. After 15 min of grinding at 500 rpm, a substantial reduction in particle size from microns to the nanoscale was obtained, while preserving the long and short-range order of the material. Moreover, despite prolonged grinding, an increase in external surface area was still evident, while the characteristic structural properties of micas remained intact. Montmorillonite, a natural clay mineral, was used as a reference for comparing the structural and textural properties under equivalent grinding conditions.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"277 ","pages":"Article 107969"},"PeriodicalIF":5.8000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of mechanical activation on the structural, morphological and textural properties of synthetic high-charge micas\",\"authors\":\"Aníbal López-Marín , Fernando Aguado , Rosa Martín-Rodríguez , Ana C. Perdigón\",\"doi\":\"10.1016/j.clay.2025.107969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dry grinding is an effective method for mechanically activating clay minerals to enhance their efficiency in various material applications. This is achieved by increasing the number of exposed active sites and the overall surface area through particle size reduction. Nevertheless, this method frequently results in a reduction of crystallinity or alterations in the structure of the clay material. In this context, trioctahedral clays with a high aluminum content exhibit greater structural resistance to degradation. Thus, this work aimed to employ dry grinding as an effective top-down nano-sintering method to obtain nano-clays from the high-charge mica family. High-charge micas are a group of trioctahedral synthetic micas with aluminum in the tetrahedral layer, widely studied because of their interesting adsorption properties. The novelty of this work laid in demonstrating that dry grinding can effectively reduce the particle size of high-charge micas to the nanoscale while preserving their structural integrity, representing a significant advancement in the controlled mechanical activation of trioctahedral clays without inducing amorphization. To reduce the risk of amorphization, gentle milling conditions were applied using a planetary ball mill. After 15 min of grinding at 500 rpm, a substantial reduction in particle size from microns to the nanoscale was obtained, while preserving the long and short-range order of the material. Moreover, despite prolonged grinding, an increase in external surface area was still evident, while the characteristic structural properties of micas remained intact. Montmorillonite, a natural clay mineral, was used as a reference for comparing the structural and textural properties under equivalent grinding conditions.</div></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"277 \",\"pages\":\"Article 107969\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131725002741\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725002741","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of mechanical activation on the structural, morphological and textural properties of synthetic high-charge micas
Dry grinding is an effective method for mechanically activating clay minerals to enhance their efficiency in various material applications. This is achieved by increasing the number of exposed active sites and the overall surface area through particle size reduction. Nevertheless, this method frequently results in a reduction of crystallinity or alterations in the structure of the clay material. In this context, trioctahedral clays with a high aluminum content exhibit greater structural resistance to degradation. Thus, this work aimed to employ dry grinding as an effective top-down nano-sintering method to obtain nano-clays from the high-charge mica family. High-charge micas are a group of trioctahedral synthetic micas with aluminum in the tetrahedral layer, widely studied because of their interesting adsorption properties. The novelty of this work laid in demonstrating that dry grinding can effectively reduce the particle size of high-charge micas to the nanoscale while preserving their structural integrity, representing a significant advancement in the controlled mechanical activation of trioctahedral clays without inducing amorphization. To reduce the risk of amorphization, gentle milling conditions were applied using a planetary ball mill. After 15 min of grinding at 500 rpm, a substantial reduction in particle size from microns to the nanoscale was obtained, while preserving the long and short-range order of the material. Moreover, despite prolonged grinding, an increase in external surface area was still evident, while the characteristic structural properties of micas remained intact. Montmorillonite, a natural clay mineral, was used as a reference for comparing the structural and textural properties under equivalent grinding conditions.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...