Parker K. Lewis, Nouha El Amri, Erica E. Burnham, Natalia Arrus and Nathalie M. Pinkerton*,
{"title":"序贯纳米沉淀法(SNaP)形成聚合物微粒的工艺和配方参数","authors":"Parker K. Lewis, Nouha El Amri, Erica E. Burnham, Natalia Arrus and Nathalie M. Pinkerton*, ","doi":"10.1021/acsengineeringau.5c00035","DOIUrl":null,"url":null,"abstract":"<p >Polymeric microparticles (MPs) are valuable drug delivery vehicles for extended-release applications, but current manufacturing techniques present significant challenges in balancing size control with scalability. Industrial synthesis processes provide high throughput but limited precision, while laboratory-scale technologies offer precise control but poor scalability. This study explores Sequential NanoPrecipitation (SNaP), a two-step controlled precipitation process for polymeric microparticle production, to bridge the gap between laboratory precision and industrial scalability. We systematically investigated critical process parameters governing MP formation, focusing on poly(lactic acid) (PLA) MPs stabilized with poly(vinyl alcohol) (PVA). By comparing vortex and impinging jet mixing geometries, we demonstrated that vortex mixing provides superior performance for core assembly, particularly at higher polymer concentrations. We established the influence of delay time (<i>T</i><sub>d</sub>) and core stream concentration (<i>C</i><sub>core</sub>) on particle size, confirming that microparticle assembly follows Smoluchowski diffusion-limited growth kinetics within defined operational boundaries. Through this approach, we achieved precise control over microparticle size (1.6–3.0 μm) with narrow polydispersity. The versatility of SNaP was further demonstrated by the successful formation of MPs with different stabilizers while maintaining consistent size control. Finally, we validated the pharmaceutical relevance of SNaP by encapsulating itraconazole with high efficiency (83–85%) and characterizing its sustained release profile. These findings establish SNaP as a robust, scalable platform for high-quality pharmaceutical microparticle production with superior control over critical quality attributes.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"5 4","pages":"468–477"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsengineeringau.5c00035","citationCount":"0","resultStr":"{\"title\":\"Process and Formulation Parameters Governing Polymeric Microparticle Formation via Sequential NanoPrecipitation (SNaP)\",\"authors\":\"Parker K. Lewis, Nouha El Amri, Erica E. Burnham, Natalia Arrus and Nathalie M. Pinkerton*, \",\"doi\":\"10.1021/acsengineeringau.5c00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymeric microparticles (MPs) are valuable drug delivery vehicles for extended-release applications, but current manufacturing techniques present significant challenges in balancing size control with scalability. Industrial synthesis processes provide high throughput but limited precision, while laboratory-scale technologies offer precise control but poor scalability. This study explores Sequential NanoPrecipitation (SNaP), a two-step controlled precipitation process for polymeric microparticle production, to bridge the gap between laboratory precision and industrial scalability. We systematically investigated critical process parameters governing MP formation, focusing on poly(lactic acid) (PLA) MPs stabilized with poly(vinyl alcohol) (PVA). By comparing vortex and impinging jet mixing geometries, we demonstrated that vortex mixing provides superior performance for core assembly, particularly at higher polymer concentrations. We established the influence of delay time (<i>T</i><sub>d</sub>) and core stream concentration (<i>C</i><sub>core</sub>) on particle size, confirming that microparticle assembly follows Smoluchowski diffusion-limited growth kinetics within defined operational boundaries. Through this approach, we achieved precise control over microparticle size (1.6–3.0 μm) with narrow polydispersity. The versatility of SNaP was further demonstrated by the successful formation of MPs with different stabilizers while maintaining consistent size control. Finally, we validated the pharmaceutical relevance of SNaP by encapsulating itraconazole with high efficiency (83–85%) and characterizing its sustained release profile. These findings establish SNaP as a robust, scalable platform for high-quality pharmaceutical microparticle production with superior control over critical quality attributes.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":\"5 4\",\"pages\":\"468–477\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsengineeringau.5c00035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.5c00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.5c00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Process and Formulation Parameters Governing Polymeric Microparticle Formation via Sequential NanoPrecipitation (SNaP)
Polymeric microparticles (MPs) are valuable drug delivery vehicles for extended-release applications, but current manufacturing techniques present significant challenges in balancing size control with scalability. Industrial synthesis processes provide high throughput but limited precision, while laboratory-scale technologies offer precise control but poor scalability. This study explores Sequential NanoPrecipitation (SNaP), a two-step controlled precipitation process for polymeric microparticle production, to bridge the gap between laboratory precision and industrial scalability. We systematically investigated critical process parameters governing MP formation, focusing on poly(lactic acid) (PLA) MPs stabilized with poly(vinyl alcohol) (PVA). By comparing vortex and impinging jet mixing geometries, we demonstrated that vortex mixing provides superior performance for core assembly, particularly at higher polymer concentrations. We established the influence of delay time (Td) and core stream concentration (Ccore) on particle size, confirming that microparticle assembly follows Smoluchowski diffusion-limited growth kinetics within defined operational boundaries. Through this approach, we achieved precise control over microparticle size (1.6–3.0 μm) with narrow polydispersity. The versatility of SNaP was further demonstrated by the successful formation of MPs with different stabilizers while maintaining consistent size control. Finally, we validated the pharmaceutical relevance of SNaP by encapsulating itraconazole with high efficiency (83–85%) and characterizing its sustained release profile. These findings establish SNaP as a robust, scalable platform for high-quality pharmaceutical microparticle production with superior control over critical quality attributes.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)