Akinobu Yamaguchi*, Masatoshi Takahashi, Satoshi Amaya and Tsunemasa Saiki,
{"title":"使用SAW激励的可移动执行器的一次性微芯片平台","authors":"Akinobu Yamaguchi*, Masatoshi Takahashi, Satoshi Amaya and Tsunemasa Saiki, ","doi":"10.1021/acsmeasuresciau.5c00027","DOIUrl":null,"url":null,"abstract":"<p >A surface-acoustic-wave-driven microactuator that allows separation of the piezoelectric substrate and chip has been fabricated and characterized. By simply placing the microactuator on a disposable chip, the microactuator did not contaminate the substrate with any reagent and could easily transport droplets and powders. The microactuator also allowed mixing of heterophase materials, such as powder and droplets, in a microfluidic well to increase their chemical reaction. This microactuator will enable significant cost savings and automation of plants and research facilities.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 4","pages":"489–496"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmeasuresciau.5c00027","citationCount":"0","resultStr":"{\"title\":\"Disposable Microchip Platform with Removable Actuators Using SAW Excitation\",\"authors\":\"Akinobu Yamaguchi*, Masatoshi Takahashi, Satoshi Amaya and Tsunemasa Saiki, \",\"doi\":\"10.1021/acsmeasuresciau.5c00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A surface-acoustic-wave-driven microactuator that allows separation of the piezoelectric substrate and chip has been fabricated and characterized. By simply placing the microactuator on a disposable chip, the microactuator did not contaminate the substrate with any reagent and could easily transport droplets and powders. The microactuator also allowed mixing of heterophase materials, such as powder and droplets, in a microfluidic well to increase their chemical reaction. This microactuator will enable significant cost savings and automation of plants and research facilities.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"5 4\",\"pages\":\"489–496\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsmeasuresciau.5c00027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Disposable Microchip Platform with Removable Actuators Using SAW Excitation
A surface-acoustic-wave-driven microactuator that allows separation of the piezoelectric substrate and chip has been fabricated and characterized. By simply placing the microactuator on a disposable chip, the microactuator did not contaminate the substrate with any reagent and could easily transport droplets and powders. The microactuator also allowed mixing of heterophase materials, such as powder and droplets, in a microfluidic well to increase their chemical reaction. This microactuator will enable significant cost savings and automation of plants and research facilities.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.