Md Tanim-Al Hassan, Yongling Ai, Bhavya Deshaboina, Timothy Yaroshuk, Arjun Sharma, Quentin Young, Howard D. Dewald and Hao Chen*,
{"title":"磷酸肽和糖肽的库仑质谱绝对定量","authors":"Md Tanim-Al Hassan, Yongling Ai, Bhavya Deshaboina, Timothy Yaroshuk, Arjun Sharma, Quentin Young, Howard D. Dewald and Hao Chen*, ","doi":"10.1021/acsmeasuresciau.5c00047","DOIUrl":null,"url":null,"abstract":"<p >Phosphorylation and glycosylation are two important protein post-transitional modifications (PTMs). However, quantification of these PTMs is challenging due to the lack of protein or peptide standards. In this study, we introduced a novel approach using coulometric mass spectrometry (CMS) for absolute quantitation of phosphopeptides and glycopeptides without using standards. First, phosphorylated tyrosine peptides such as TSTEPQpYQPGENL and RRLIEDAEpYAARG can be converted into electrochemically active tyrosine peptides via enzymatic phosphate removal using alkaline phosphatase prior to CMS quantitation. Accurate quantitation was obtained with small quantitation errors (0.3–6.6%). Alternatively, for electrochemically inactive phosphopeptides and glycopeptides, derivatization of their N-termini with an NHS ester reagent, 2,5-dioxo-1-pyrrolidinyl 3,4-dihydroxybenzene propanoate (DPDP), was conducted to introduce one electroactive catechol tag, allowing the DPDP-derivatized peptides to be quantified by CMS. This strategy was first validated using peptides RGD, GGYR, phosphopeptide RRApSVA, and glycopeptide NYIVGQPSS(β-GlcNAc)TGNL–OH, and successful quantification was achieved with quantification errors less than 6%. Taking one step further, we applied this approach to quantify glycopeptides generated from tryptic digestion of the NIST monoclonal antibody (mAb). Through hydrophilic interaction liquid chromatography column separation, five N297 glycopeptides were successfully derivatized, separated, and quantified by CMS without the use of standards. Due to the biological significance of PTMs, this study for quantifying peptides carrying PTMs would have a high potential for quantitative proteomics and biological research.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 4","pages":"559–571"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmeasuresciau.5c00047","citationCount":"0","resultStr":"{\"title\":\"Absolute Quantitation of Phosphopeptides and Glycopeptides Using Coulometric Mass Spectrometry\",\"authors\":\"Md Tanim-Al Hassan, Yongling Ai, Bhavya Deshaboina, Timothy Yaroshuk, Arjun Sharma, Quentin Young, Howard D. Dewald and Hao Chen*, \",\"doi\":\"10.1021/acsmeasuresciau.5c00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Phosphorylation and glycosylation are two important protein post-transitional modifications (PTMs). However, quantification of these PTMs is challenging due to the lack of protein or peptide standards. In this study, we introduced a novel approach using coulometric mass spectrometry (CMS) for absolute quantitation of phosphopeptides and glycopeptides without using standards. First, phosphorylated tyrosine peptides such as TSTEPQpYQPGENL and RRLIEDAEpYAARG can be converted into electrochemically active tyrosine peptides via enzymatic phosphate removal using alkaline phosphatase prior to CMS quantitation. Accurate quantitation was obtained with small quantitation errors (0.3–6.6%). Alternatively, for electrochemically inactive phosphopeptides and glycopeptides, derivatization of their N-termini with an NHS ester reagent, 2,5-dioxo-1-pyrrolidinyl 3,4-dihydroxybenzene propanoate (DPDP), was conducted to introduce one electroactive catechol tag, allowing the DPDP-derivatized peptides to be quantified by CMS. This strategy was first validated using peptides RGD, GGYR, phosphopeptide RRApSVA, and glycopeptide NYIVGQPSS(β-GlcNAc)TGNL–OH, and successful quantification was achieved with quantification errors less than 6%. Taking one step further, we applied this approach to quantify glycopeptides generated from tryptic digestion of the NIST monoclonal antibody (mAb). Through hydrophilic interaction liquid chromatography column separation, five N297 glycopeptides were successfully derivatized, separated, and quantified by CMS without the use of standards. Due to the biological significance of PTMs, this study for quantifying peptides carrying PTMs would have a high potential for quantitative proteomics and biological research.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"5 4\",\"pages\":\"559–571\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsmeasuresciau.5c00047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Absolute Quantitation of Phosphopeptides and Glycopeptides Using Coulometric Mass Spectrometry
Phosphorylation and glycosylation are two important protein post-transitional modifications (PTMs). However, quantification of these PTMs is challenging due to the lack of protein or peptide standards. In this study, we introduced a novel approach using coulometric mass spectrometry (CMS) for absolute quantitation of phosphopeptides and glycopeptides without using standards. First, phosphorylated tyrosine peptides such as TSTEPQpYQPGENL and RRLIEDAEpYAARG can be converted into electrochemically active tyrosine peptides via enzymatic phosphate removal using alkaline phosphatase prior to CMS quantitation. Accurate quantitation was obtained with small quantitation errors (0.3–6.6%). Alternatively, for electrochemically inactive phosphopeptides and glycopeptides, derivatization of their N-termini with an NHS ester reagent, 2,5-dioxo-1-pyrrolidinyl 3,4-dihydroxybenzene propanoate (DPDP), was conducted to introduce one electroactive catechol tag, allowing the DPDP-derivatized peptides to be quantified by CMS. This strategy was first validated using peptides RGD, GGYR, phosphopeptide RRApSVA, and glycopeptide NYIVGQPSS(β-GlcNAc)TGNL–OH, and successful quantification was achieved with quantification errors less than 6%. Taking one step further, we applied this approach to quantify glycopeptides generated from tryptic digestion of the NIST monoclonal antibody (mAb). Through hydrophilic interaction liquid chromatography column separation, five N297 glycopeptides were successfully derivatized, separated, and quantified by CMS without the use of standards. Due to the biological significance of PTMs, this study for quantifying peptides carrying PTMs would have a high potential for quantitative proteomics and biological research.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.