通过电子结构调制增强卤化苯乙炔修饰的Cu2O表面的光催化性能:DFT和实验研究

IF 6.3 Q2 NANOSCIENCE & NANOTECHNOLOGY
Jui-Cheng Kao, Wei-Yang Yu, Kuo-Chang Chien, Po-Jung Chou, Michael H. Huang*, Yu-Chieh Lo* and Jyh-Pin Chou*, 
{"title":"通过电子结构调制增强卤化苯乙炔修饰的Cu2O表面的光催化性能:DFT和实验研究","authors":"Jui-Cheng Kao,&nbsp;Wei-Yang Yu,&nbsp;Kuo-Chang Chien,&nbsp;Po-Jung Chou,&nbsp;Michael H. Huang*,&nbsp;Yu-Chieh Lo* and Jyh-Pin Chou*,&nbsp;","doi":"10.1021/acsnanoscienceau.5c00030","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the photocatalytic performance of Cu<sub>2</sub>O surfaces modified with halogen-substituted phenylacetylenes (4-XA), including 1-ethynyl-4-fluorobenzene (4-FA), 1-chloro-4-ethynylbenzene (4-CA), and 1-bromo-4-ethynylbenzene (4-BA), using an integrated theoretical and experimental approach. Through density functional theory (DFT) calculations and ultraviolet photoelectron spectroscopy (UPS) measurements, we analyze how these molecular decorators affect charge transfer dynamics and the electronic structure of the Cu<sub>2</sub>O {100}, {110}, and {111} facets. Two distinct photocatalytic mechanisms are proposed: one where electrons reach the vacuum level through the molecular decorator and another where electrons escape directly through the Cu<sub>2</sub>O surface via molecular-induced hybridized states. Our results show that 4-BA-modified {100} surfaces exhibit the strongest enhancement, which is attributed to the presence of in-gap molecular states, increased charge separation, and a significantly reduced work function. Experimental degradation of methyl orange validates the trend 4-BA &gt; 4-CA &gt; 4-FA, consistent with theoretical predictions. These findings highlight the crucial role of band structure engineering and provide guidelines for the rational design of high-performance molecularly decorated photocatalysts.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 4","pages":"314–323"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnanoscienceau.5c00030","citationCount":"0","resultStr":"{\"title\":\"Enhanced Photocatalytic Performance of Halogenated Phenylacetylene-Decorated Cu2O Surfaces via Electronic Structure Modulation: A DFT and Experimental Study\",\"authors\":\"Jui-Cheng Kao,&nbsp;Wei-Yang Yu,&nbsp;Kuo-Chang Chien,&nbsp;Po-Jung Chou,&nbsp;Michael H. Huang*,&nbsp;Yu-Chieh Lo* and Jyh-Pin Chou*,&nbsp;\",\"doi\":\"10.1021/acsnanoscienceau.5c00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates the photocatalytic performance of Cu<sub>2</sub>O surfaces modified with halogen-substituted phenylacetylenes (4-XA), including 1-ethynyl-4-fluorobenzene (4-FA), 1-chloro-4-ethynylbenzene (4-CA), and 1-bromo-4-ethynylbenzene (4-BA), using an integrated theoretical and experimental approach. Through density functional theory (DFT) calculations and ultraviolet photoelectron spectroscopy (UPS) measurements, we analyze how these molecular decorators affect charge transfer dynamics and the electronic structure of the Cu<sub>2</sub>O {100}, {110}, and {111} facets. Two distinct photocatalytic mechanisms are proposed: one where electrons reach the vacuum level through the molecular decorator and another where electrons escape directly through the Cu<sub>2</sub>O surface via molecular-induced hybridized states. Our results show that 4-BA-modified {100} surfaces exhibit the strongest enhancement, which is attributed to the presence of in-gap molecular states, increased charge separation, and a significantly reduced work function. Experimental degradation of methyl orange validates the trend 4-BA &gt; 4-CA &gt; 4-FA, consistent with theoretical predictions. These findings highlight the crucial role of band structure engineering and provide guidelines for the rational design of high-performance molecularly decorated photocatalysts.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"5 4\",\"pages\":\"314–323\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsnanoscienceau.5c00030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用理论与实验相结合的方法,研究了卤素取代苯乙炔(4-XA),包括1-乙基-4-氟苯(4-FA)、1-氯-4-乙基苯(4-CA)和1-溴-4-乙基苯(4-BA)修饰的Cu2O表面的光催化性能。通过密度泛函理论(DFT)计算和紫外光电子能谱(UPS)测量,我们分析了这些分子修饰物如何影响Cu2O{100}、{110}和{111}面的电荷传递动力学和电子结构。提出了两种不同的光催化机制:一种是电子通过分子修饰物到达真空水平,另一种是电子通过分子诱导的杂化态直接通过Cu2O表面逃逸。我们的研究结果表明,4- ba修饰的{100}表面表现出最强的增强,这是由于存在间隙内分子状态,增加了电荷分离,并显着降低了功函数。甲基橙的实验降解验证了4-BA >; 4-CA >; 4-FA的趋势,与理论预测一致。这些发现突出了带结构工程的重要作用,并为高性能分子修饰光催化剂的合理设计提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Photocatalytic Performance of Halogenated Phenylacetylene-Decorated Cu2O Surfaces via Electronic Structure Modulation: A DFT and Experimental Study

This study investigates the photocatalytic performance of Cu2O surfaces modified with halogen-substituted phenylacetylenes (4-XA), including 1-ethynyl-4-fluorobenzene (4-FA), 1-chloro-4-ethynylbenzene (4-CA), and 1-bromo-4-ethynylbenzene (4-BA), using an integrated theoretical and experimental approach. Through density functional theory (DFT) calculations and ultraviolet photoelectron spectroscopy (UPS) measurements, we analyze how these molecular decorators affect charge transfer dynamics and the electronic structure of the Cu2O {100}, {110}, and {111} facets. Two distinct photocatalytic mechanisms are proposed: one where electrons reach the vacuum level through the molecular decorator and another where electrons escape directly through the Cu2O surface via molecular-induced hybridized states. Our results show that 4-BA-modified {100} surfaces exhibit the strongest enhancement, which is attributed to the presence of in-gap molecular states, increased charge separation, and a significantly reduced work function. Experimental degradation of methyl orange validates the trend 4-BA > 4-CA > 4-FA, consistent with theoretical predictions. These findings highlight the crucial role of band structure engineering and provide guidelines for the rational design of high-performance molecularly decorated photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信