基于偏振无关bic的电磁感应透明

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Aleksandra A. Kutuzova, Sergei Li, Binze Ma, Qiang Li* and Mikhail V. Rybin*, 
{"title":"基于偏振无关bic的电磁感应透明","authors":"Aleksandra A. Kutuzova,&nbsp;Sergei Li,&nbsp;Binze Ma,&nbsp;Qiang Li* and Mikhail V. Rybin*,&nbsp;","doi":"10.1021/acsphotonics.5c00547","DOIUrl":null,"url":null,"abstract":"<p >Recently, electromagnetically induced transparency (EIT) has emerged in nanophotonics for filtering, thermal camouflaging, sensing, and others. However, most of the proposed concepts operate for a specific polarization of excitation, which limits their performance in applications. Here we propose a design providing a polarization-independent EIT resonance. Our approach is based on a silicon metasurface supporting symmetry-protected quasi-bound states in the continuum (quasi-BICs) in the near-infrared range. The metasurface consists of a periodic array of cut silicon disks on a SiO<sub>2</sub> substrate. We achieve polarization independence by combining two different quasi-BIC EIT modes for two orthogonal polarizations of exciting light. By tuning the interference of broad and narrow Mie-resonant multipoles, we have developed a metasurface with the desired properties. The effect is robust for various geometrical parameters. Furthermore, we have fabricated the optimized structure and experimentally confirmed our approach.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 8","pages":"4289–4295"},"PeriodicalIF":6.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization-Independent BIC-Based Electromagnetically Induced Transparency\",\"authors\":\"Aleksandra A. Kutuzova,&nbsp;Sergei Li,&nbsp;Binze Ma,&nbsp;Qiang Li* and Mikhail V. Rybin*,&nbsp;\",\"doi\":\"10.1021/acsphotonics.5c00547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recently, electromagnetically induced transparency (EIT) has emerged in nanophotonics for filtering, thermal camouflaging, sensing, and others. However, most of the proposed concepts operate for a specific polarization of excitation, which limits their performance in applications. Here we propose a design providing a polarization-independent EIT resonance. Our approach is based on a silicon metasurface supporting symmetry-protected quasi-bound states in the continuum (quasi-BICs) in the near-infrared range. The metasurface consists of a periodic array of cut silicon disks on a SiO<sub>2</sub> substrate. We achieve polarization independence by combining two different quasi-BIC EIT modes for two orthogonal polarizations of exciting light. By tuning the interference of broad and narrow Mie-resonant multipoles, we have developed a metasurface with the desired properties. The effect is robust for various geometrical parameters. Furthermore, we have fabricated the optimized structure and experimentally confirmed our approach.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"12 8\",\"pages\":\"4289–4295\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.5c00547\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c00547","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,电磁感应透明(EIT)在纳米光子学中应用于滤波、热伪装、传感等领域。然而,大多数提出的概念都适用于特定的激励极化,这限制了它们在应用中的性能。在这里,我们提出了一种提供极化无关的EIT谐振的设计。我们的方法是基于在近红外范围内支持连续介质中对称保护的准束缚态(准bic)的硅超表面。超表面由在SiO2衬底上切割的硅片的周期性阵列组成。我们通过组合两种不同的准bic EIT模式来实现两个正交偏振的激发光的偏振无关性。通过调节宽、窄微波谐振多极的干涉,我们开发出了具有理想性能的超表面。该效应对各种几何参数都具有鲁棒性。此外,我们还制作了优化的结构,并通过实验验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polarization-Independent BIC-Based Electromagnetically Induced Transparency

Polarization-Independent BIC-Based Electromagnetically Induced Transparency

Recently, electromagnetically induced transparency (EIT) has emerged in nanophotonics for filtering, thermal camouflaging, sensing, and others. However, most of the proposed concepts operate for a specific polarization of excitation, which limits their performance in applications. Here we propose a design providing a polarization-independent EIT resonance. Our approach is based on a silicon metasurface supporting symmetry-protected quasi-bound states in the continuum (quasi-BICs) in the near-infrared range. The metasurface consists of a periodic array of cut silicon disks on a SiO2 substrate. We achieve polarization independence by combining two different quasi-BIC EIT modes for two orthogonal polarizations of exciting light. By tuning the interference of broad and narrow Mie-resonant multipoles, we have developed a metasurface with the desired properties. The effect is robust for various geometrical parameters. Furthermore, we have fabricated the optimized structure and experimentally confirmed our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信