Cynthia Avedian, Christina D. M. Trang and Michael S. Inkpen*,
{"title":"具有溶剂不渗透金属薄膜的模板剥离基板","authors":"Cynthia Avedian, Christina D. M. Trang and Michael S. Inkpen*, ","doi":"10.1021/acsnanoscienceau.5c00018","DOIUrl":null,"url":null,"abstract":"<p >Template-stripped substrates provide on-demand access to clean, ultraflat gold surfaces, avoiding the need for laborious cleaning procedures or the use of expensive single-crystal electrodes. While these gold/adhesion layer/support sandwich structures are most conveniently prepared through the application of epoxy or optical adhesives, such composites exhibit instabilities in organic solvents that limit their wider application. Here we demonstrate that substrates with solvent-impermeable metal films can be used in previously problematic chemical environments after integration into a protective, custom-built (electrochemical) flow cell. We apply our methodology to probe different self-assembled monolayers, observing reproducible alkanethiol reductive desorption features, an exemplary redox response using 6-(ferrocenyl)hexanethiol, and corroborate findings that cobalt(II) bis(terpyridine) assemblies exhibit a low coverage. This work significantly extends the utility of these substrates, relative to mechanically polished or freshly deposited alternatives, particularly for studies of systems involving adsorbed molecules whose properties are strongly influenced by the nanoscopic features of the metal-solution interface.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"5 4","pages":"269–275"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnanoscienceau.5c00018","citationCount":"0","resultStr":"{\"title\":\"Template-stripped substrates with solvent-impermeable metal thin films\",\"authors\":\"Cynthia Avedian, Christina D. M. Trang and Michael S. Inkpen*, \",\"doi\":\"10.1021/acsnanoscienceau.5c00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Template-stripped substrates provide on-demand access to clean, ultraflat gold surfaces, avoiding the need for laborious cleaning procedures or the use of expensive single-crystal electrodes. While these gold/adhesion layer/support sandwich structures are most conveniently prepared through the application of epoxy or optical adhesives, such composites exhibit instabilities in organic solvents that limit their wider application. Here we demonstrate that substrates with solvent-impermeable metal films can be used in previously problematic chemical environments after integration into a protective, custom-built (electrochemical) flow cell. We apply our methodology to probe different self-assembled monolayers, observing reproducible alkanethiol reductive desorption features, an exemplary redox response using 6-(ferrocenyl)hexanethiol, and corroborate findings that cobalt(II) bis(terpyridine) assemblies exhibit a low coverage. This work significantly extends the utility of these substrates, relative to mechanically polished or freshly deposited alternatives, particularly for studies of systems involving adsorbed molecules whose properties are strongly influenced by the nanoscopic features of the metal-solution interface.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"5 4\",\"pages\":\"269–275\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsnanoscienceau.5c00018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.5c00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Template-stripped substrates with solvent-impermeable metal thin films
Template-stripped substrates provide on-demand access to clean, ultraflat gold surfaces, avoiding the need for laborious cleaning procedures or the use of expensive single-crystal electrodes. While these gold/adhesion layer/support sandwich structures are most conveniently prepared through the application of epoxy or optical adhesives, such composites exhibit instabilities in organic solvents that limit their wider application. Here we demonstrate that substrates with solvent-impermeable metal films can be used in previously problematic chemical environments after integration into a protective, custom-built (electrochemical) flow cell. We apply our methodology to probe different self-assembled monolayers, observing reproducible alkanethiol reductive desorption features, an exemplary redox response using 6-(ferrocenyl)hexanethiol, and corroborate findings that cobalt(II) bis(terpyridine) assemblies exhibit a low coverage. This work significantly extends the utility of these substrates, relative to mechanically polished or freshly deposited alternatives, particularly for studies of systems involving adsorbed molecules whose properties are strongly influenced by the nanoscopic features of the metal-solution interface.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.