{"title":"解耦高效电化学尿素氧化及共掺杂NiS机理研究","authors":"Prachi Upadhyay, Artina Deka and Sankar Chakma*, ","doi":"10.1021/acsengineeringau.5c00034","DOIUrl":null,"url":null,"abstract":"<p >Urea electrooxidation serves as the core of urea-based fuel cells, urea electrolysis for energy generation, and urea-based wastewater treatment for environmental applications. This study emphasizes the development of electrocatalysts made from nickel–cobalt bimetallic sulfide, synthesized through an ultrasonic-assisted hydrothermal synthesis method, focusing on their capacity to oxidize urea under alkaline conditions. The objective was to reduce the onset potential for this reaction. These nickel–cobalt bimetallic sulfide catalysts were characterized by using various techniques, including X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). A notable decrease in overpotential was observed: 70 mV for Ni<sub>0.75</sub>Co<sub>0.25</sub>S and 130 mV for Ni<sub>0.50</sub>Co<sub>0.50</sub>S, compared to a Ni<sub>1</sub>Co<sub>0</sub>S electrode. Furthermore, the XPS analysis indicates that the ratio of Ni<sup>3+</sup>/Ni<sup>2+</sup> is higher for Ni<sub>0.75</sub>Co<sub>0.25</sub>S than for other combinations, with Ni<sup>3+</sup> acting as the primary active center for urea electrooxidation. This reduction in the onset potential for urea oxidation and the increase in Ni<sup>3+</sup> on the nickel–cobalt bimetallic sulfide electrodes reveal significant potential for future applications in urea electrooxidation.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"5 4","pages":"450–467"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsengineeringau.5c00034","citationCount":"0","resultStr":"{\"title\":\"Unlocking Efficient Electrochemical Urea Oxidation and Understanding Mechanism Insights of Co-Doped NiS\",\"authors\":\"Prachi Upadhyay, Artina Deka and Sankar Chakma*, \",\"doi\":\"10.1021/acsengineeringau.5c00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Urea electrooxidation serves as the core of urea-based fuel cells, urea electrolysis for energy generation, and urea-based wastewater treatment for environmental applications. This study emphasizes the development of electrocatalysts made from nickel–cobalt bimetallic sulfide, synthesized through an ultrasonic-assisted hydrothermal synthesis method, focusing on their capacity to oxidize urea under alkaline conditions. The objective was to reduce the onset potential for this reaction. These nickel–cobalt bimetallic sulfide catalysts were characterized by using various techniques, including X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). A notable decrease in overpotential was observed: 70 mV for Ni<sub>0.75</sub>Co<sub>0.25</sub>S and 130 mV for Ni<sub>0.50</sub>Co<sub>0.50</sub>S, compared to a Ni<sub>1</sub>Co<sub>0</sub>S electrode. Furthermore, the XPS analysis indicates that the ratio of Ni<sup>3+</sup>/Ni<sup>2+</sup> is higher for Ni<sub>0.75</sub>Co<sub>0.25</sub>S than for other combinations, with Ni<sup>3+</sup> acting as the primary active center for urea electrooxidation. This reduction in the onset potential for urea oxidation and the increase in Ni<sup>3+</sup> on the nickel–cobalt bimetallic sulfide electrodes reveal significant potential for future applications in urea electrooxidation.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":\"5 4\",\"pages\":\"450–467\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsengineeringau.5c00034\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.5c00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.5c00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Unlocking Efficient Electrochemical Urea Oxidation and Understanding Mechanism Insights of Co-Doped NiS
Urea electrooxidation serves as the core of urea-based fuel cells, urea electrolysis for energy generation, and urea-based wastewater treatment for environmental applications. This study emphasizes the development of electrocatalysts made from nickel–cobalt bimetallic sulfide, synthesized through an ultrasonic-assisted hydrothermal synthesis method, focusing on their capacity to oxidize urea under alkaline conditions. The objective was to reduce the onset potential for this reaction. These nickel–cobalt bimetallic sulfide catalysts were characterized by using various techniques, including X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). A notable decrease in overpotential was observed: 70 mV for Ni0.75Co0.25S and 130 mV for Ni0.50Co0.50S, compared to a Ni1Co0S electrode. Furthermore, the XPS analysis indicates that the ratio of Ni3+/Ni2+ is higher for Ni0.75Co0.25S than for other combinations, with Ni3+ acting as the primary active center for urea electrooxidation. This reduction in the onset potential for urea oxidation and the increase in Ni3+ on the nickel–cobalt bimetallic sulfide electrodes reveal significant potential for future applications in urea electrooxidation.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)