Man-Hsin Chang, Jan Benedikt Waldeck, Marius Stephan, Nirmal Kannaiyan, Valéria de Almeida, Emanuel Boudriot, Temmuz Karali, Lukas Röll, Laura Fischer, Damianos Demetriou, Nadia Gabellini, Sabrina Galinski, Andrea Schmitt, Sergi Papiol, Daniel Keeser, Peter Falkai, Moritz J Rossner, Florian J Raabe
{"title":"ipsc模型揭示了精神分裂症少突胶质细胞的遗传关联和形态改变。","authors":"Man-Hsin Chang, Jan Benedikt Waldeck, Marius Stephan, Nirmal Kannaiyan, Valéria de Almeida, Emanuel Boudriot, Temmuz Karali, Lukas Röll, Laura Fischer, Damianos Demetriou, Nadia Gabellini, Sabrina Galinski, Andrea Schmitt, Sergi Papiol, Daniel Keeser, Peter Falkai, Moritz J Rossner, Florian J Raabe","doi":"10.1038/s41398-025-03509-x","DOIUrl":null,"url":null,"abstract":"<p><p>There is strong evidence for a genetically driven neuronal contribution in schizophrenia (SCZ). Although imaging and postmortem studies also provide evidence for white matter alterations with implications of the oligodendroglial lineage in SCZ, it is unclear whether these disturbances are a secondary consequence of neuronal deficits or also, at least in parts, genetically driven and cell-autonomous. Using human induced pluripotent stem cells (hiPSCs) in combination with gene set enrichment analysis, we investigated the cellular impact of SCZ genetics on the oligodendroglial lineage. We performed unsupervised clustering analysis of hiPSC-differentiated neural cells including oligodendrocytes (iOLs) and their precursor cells (iOPCs) with corresponding human postmortem cell types from single-cell RNA sequencing (scRNAseq) data and conducted a comparative gene set enrichment analysis. Subsequently, we stratified individuals based on white matter alteration using diffusion tensor imaging (DTI) within a translational cohort (N = 112) and then explored the cellular effects of SCZ risk with hiPSC modelling in a subset of SCZ patients (N = 8) with disturbed white matter integrity and unaffected healthy controls (N = 7). hiPSC-iOPCs/iOLs expression profiles strongly correlated with human postmortem OPCs/OLs based on scRNAseq, and their transcriptional signatures were highly enriched in the genetic associations of SCZ. The cellular assessment of patient-derived iOPCs/iOLs revealed morphological alterations, including significantly increased branch length and elevated junction number in mature iOLs from SCZ. Moreover, transcriptomic profiling revealed a dysregulation in oligodendroglial cell signaling and proliferation. In sum, hiPSC-modelling shows an impact of SCZ genetics on dedicated features of the oligodendroglial lineage.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"287"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357907/pdf/","citationCount":"0","resultStr":"{\"title\":\"iPSC-modelling reveals genetic associations and morphological alterations of oligodendrocytes in schizophrenia.\",\"authors\":\"Man-Hsin Chang, Jan Benedikt Waldeck, Marius Stephan, Nirmal Kannaiyan, Valéria de Almeida, Emanuel Boudriot, Temmuz Karali, Lukas Röll, Laura Fischer, Damianos Demetriou, Nadia Gabellini, Sabrina Galinski, Andrea Schmitt, Sergi Papiol, Daniel Keeser, Peter Falkai, Moritz J Rossner, Florian J Raabe\",\"doi\":\"10.1038/s41398-025-03509-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is strong evidence for a genetically driven neuronal contribution in schizophrenia (SCZ). Although imaging and postmortem studies also provide evidence for white matter alterations with implications of the oligodendroglial lineage in SCZ, it is unclear whether these disturbances are a secondary consequence of neuronal deficits or also, at least in parts, genetically driven and cell-autonomous. Using human induced pluripotent stem cells (hiPSCs) in combination with gene set enrichment analysis, we investigated the cellular impact of SCZ genetics on the oligodendroglial lineage. We performed unsupervised clustering analysis of hiPSC-differentiated neural cells including oligodendrocytes (iOLs) and their precursor cells (iOPCs) with corresponding human postmortem cell types from single-cell RNA sequencing (scRNAseq) data and conducted a comparative gene set enrichment analysis. Subsequently, we stratified individuals based on white matter alteration using diffusion tensor imaging (DTI) within a translational cohort (N = 112) and then explored the cellular effects of SCZ risk with hiPSC modelling in a subset of SCZ patients (N = 8) with disturbed white matter integrity and unaffected healthy controls (N = 7). hiPSC-iOPCs/iOLs expression profiles strongly correlated with human postmortem OPCs/OLs based on scRNAseq, and their transcriptional signatures were highly enriched in the genetic associations of SCZ. The cellular assessment of patient-derived iOPCs/iOLs revealed morphological alterations, including significantly increased branch length and elevated junction number in mature iOLs from SCZ. Moreover, transcriptomic profiling revealed a dysregulation in oligodendroglial cell signaling and proliferation. In sum, hiPSC-modelling shows an impact of SCZ genetics on dedicated features of the oligodendroglial lineage.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":\"15 1\",\"pages\":\"287\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-025-03509-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03509-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
iPSC-modelling reveals genetic associations and morphological alterations of oligodendrocytes in schizophrenia.
There is strong evidence for a genetically driven neuronal contribution in schizophrenia (SCZ). Although imaging and postmortem studies also provide evidence for white matter alterations with implications of the oligodendroglial lineage in SCZ, it is unclear whether these disturbances are a secondary consequence of neuronal deficits or also, at least in parts, genetically driven and cell-autonomous. Using human induced pluripotent stem cells (hiPSCs) in combination with gene set enrichment analysis, we investigated the cellular impact of SCZ genetics on the oligodendroglial lineage. We performed unsupervised clustering analysis of hiPSC-differentiated neural cells including oligodendrocytes (iOLs) and their precursor cells (iOPCs) with corresponding human postmortem cell types from single-cell RNA sequencing (scRNAseq) data and conducted a comparative gene set enrichment analysis. Subsequently, we stratified individuals based on white matter alteration using diffusion tensor imaging (DTI) within a translational cohort (N = 112) and then explored the cellular effects of SCZ risk with hiPSC modelling in a subset of SCZ patients (N = 8) with disturbed white matter integrity and unaffected healthy controls (N = 7). hiPSC-iOPCs/iOLs expression profiles strongly correlated with human postmortem OPCs/OLs based on scRNAseq, and their transcriptional signatures were highly enriched in the genetic associations of SCZ. The cellular assessment of patient-derived iOPCs/iOLs revealed morphological alterations, including significantly increased branch length and elevated junction number in mature iOLs from SCZ. Moreover, transcriptomic profiling revealed a dysregulation in oligodendroglial cell signaling and proliferation. In sum, hiPSC-modelling shows an impact of SCZ genetics on dedicated features of the oligodendroglial lineage.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.