{"title":"低惯性混合电网协调调节的混合兼容并网逆变器。","authors":"Biddut Bhowmik, Moses Amoasi Acquah, Sung-Yul Kim","doi":"10.1038/s41598-025-11367-2","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid displacement of synchronous generators (SGs) by renewable energy sources has resulted in low-inertia power systems that are increasingly vulnerable to frequency instability, poor power-sharing coordination, and limited fault recovery. In this context, this paper proposes a comprehensive control and system-level realization of Hybrid-Compatible Grid-Forming Inverters (HC-GFIs)- a novel inverter framework designed to emulate synchronous generator behavior while enhancing interoperability in mixed-generation systems. The control architecture of the HC-GFIs is designed as a multi-layered cascaded structure incorporating active power-frequency droop control, voltage regulation loops, a current-limiting regulator, and a dynamic current control layer. Additionally, two novel contributions- a saturation-based DC current controller and an AC current regulator- are introduced to overcome known limitations of overcurrent vulnerability and fault ride-through challenges in conventional GFIs. Extensive time-domain simulations were conducted in both the IEEE 9-bus and 39-bus systems to evaluate scalability and dynamic performance. In the 9-bus system, subjected to a 33.33% step load disturbance, HC-GFIs reduced frequency nadir deviations by up to 0.43 Hz and improved settling time by over 90% compared to all-SG systems. Voltage deviation was maintained within 0.02 p.u. with oscillations damped within 5 s, contrasting sharply with the prolonged instability in SG-only networks. In the 39-bus system, under a severe three-phase-to-ground bolted fault, the HC-GFIs maintained voltage regulation near faulted buses and mitigated high RoCoF transients. Furthermore, the proposed HC-GFIs demonstrate compliance with IEEE Std. 2800 - 2022 RoCoF thresholds and outperform SGs in power-sharing, transient damping, and voltage ride-through performance. This study establishes HC-GFIs as a technically robust, scalable, and standards-compliant solution for stabilizing low-inertia grids, offering a critical pathway for enabling the reliable integration of renewable energy resources into future power systems.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29996"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357951/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hybrid compatible grid forming inverters with coordinated regulation for low inertia and mixed generation grids.\",\"authors\":\"Biddut Bhowmik, Moses Amoasi Acquah, Sung-Yul Kim\",\"doi\":\"10.1038/s41598-025-11367-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid displacement of synchronous generators (SGs) by renewable energy sources has resulted in low-inertia power systems that are increasingly vulnerable to frequency instability, poor power-sharing coordination, and limited fault recovery. In this context, this paper proposes a comprehensive control and system-level realization of Hybrid-Compatible Grid-Forming Inverters (HC-GFIs)- a novel inverter framework designed to emulate synchronous generator behavior while enhancing interoperability in mixed-generation systems. The control architecture of the HC-GFIs is designed as a multi-layered cascaded structure incorporating active power-frequency droop control, voltage regulation loops, a current-limiting regulator, and a dynamic current control layer. Additionally, two novel contributions- a saturation-based DC current controller and an AC current regulator- are introduced to overcome known limitations of overcurrent vulnerability and fault ride-through challenges in conventional GFIs. Extensive time-domain simulations were conducted in both the IEEE 9-bus and 39-bus systems to evaluate scalability and dynamic performance. In the 9-bus system, subjected to a 33.33% step load disturbance, HC-GFIs reduced frequency nadir deviations by up to 0.43 Hz and improved settling time by over 90% compared to all-SG systems. Voltage deviation was maintained within 0.02 p.u. with oscillations damped within 5 s, contrasting sharply with the prolonged instability in SG-only networks. In the 39-bus system, under a severe three-phase-to-ground bolted fault, the HC-GFIs maintained voltage regulation near faulted buses and mitigated high RoCoF transients. Furthermore, the proposed HC-GFIs demonstrate compliance with IEEE Std. 2800 - 2022 RoCoF thresholds and outperform SGs in power-sharing, transient damping, and voltage ride-through performance. This study establishes HC-GFIs as a technically robust, scalable, and standards-compliant solution for stabilizing low-inertia grids, offering a critical pathway for enabling the reliable integration of renewable energy resources into future power systems.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"29996\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357951/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-11367-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-11367-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Hybrid compatible grid forming inverters with coordinated regulation for low inertia and mixed generation grids.
The rapid displacement of synchronous generators (SGs) by renewable energy sources has resulted in low-inertia power systems that are increasingly vulnerable to frequency instability, poor power-sharing coordination, and limited fault recovery. In this context, this paper proposes a comprehensive control and system-level realization of Hybrid-Compatible Grid-Forming Inverters (HC-GFIs)- a novel inverter framework designed to emulate synchronous generator behavior while enhancing interoperability in mixed-generation systems. The control architecture of the HC-GFIs is designed as a multi-layered cascaded structure incorporating active power-frequency droop control, voltage regulation loops, a current-limiting regulator, and a dynamic current control layer. Additionally, two novel contributions- a saturation-based DC current controller and an AC current regulator- are introduced to overcome known limitations of overcurrent vulnerability and fault ride-through challenges in conventional GFIs. Extensive time-domain simulations were conducted in both the IEEE 9-bus and 39-bus systems to evaluate scalability and dynamic performance. In the 9-bus system, subjected to a 33.33% step load disturbance, HC-GFIs reduced frequency nadir deviations by up to 0.43 Hz and improved settling time by over 90% compared to all-SG systems. Voltage deviation was maintained within 0.02 p.u. with oscillations damped within 5 s, contrasting sharply with the prolonged instability in SG-only networks. In the 39-bus system, under a severe three-phase-to-ground bolted fault, the HC-GFIs maintained voltage regulation near faulted buses and mitigated high RoCoF transients. Furthermore, the proposed HC-GFIs demonstrate compliance with IEEE Std. 2800 - 2022 RoCoF thresholds and outperform SGs in power-sharing, transient damping, and voltage ride-through performance. This study establishes HC-GFIs as a technically robust, scalable, and standards-compliant solution for stabilizing low-inertia grids, offering a critical pathway for enabling the reliable integration of renewable energy resources into future power systems.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.