{"title":"对话中多模态情感识别的交叉模态门控特征增强。","authors":"Shiyun Zhao, Jinchang Ren, Xiaojuan Zhou","doi":"10.1038/s41598-025-11989-6","DOIUrl":null,"url":null,"abstract":"<p><p>Emotion recognition in conversations (ERC), which involves identifying the emotional state of each utterance within a dialogue, plays a vital role in developing empathetic artificial intelligence systems. In practical applications, such as video-based recruitment interviews, customer service, health monitoring, intelligent personal assistants, and online education, ERC can facilitate the analysis of emotional cues, improve decision-making processes, and enhance user interaction and satisfaction. Current multimodal emotion recognition research faces several challenges, such as ineffective emotional information extraction from single modalities, underused complementary features, and inter-modal redundancy. To tackle these issues, this paper introduces a cross-modal gated attention mechanism for emotion recognition. The method extracts and fuses visual, textual, and auditory features to enhance accuracy and stability. A cross-modal guided gating mechanism is designed to strengthen single-modality features and utilize a third modality to improve bimodal feature fusion, boosting multimodal feature representation. Furthermore, a cross-modal distillation loss function is proposed to reduce redundancy and improve feature discrimination. This function employs a dual-supervision mechanism with teacher and student models, ensuring consistency in single-modal, bimodal, and trimodal feature representations. Experimental results on the IEMOCAP and MELD datasets indicate that the proposed method achieves higher accuracy and comparable F1 scores than existing approaches, highlighting its effectiveness in capturing multimodal dependencies and balancing modality contributions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"30004"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357892/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cross-modal gated feature enhancement for multimodal emotion recognition in conversations.\",\"authors\":\"Shiyun Zhao, Jinchang Ren, Xiaojuan Zhou\",\"doi\":\"10.1038/s41598-025-11989-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emotion recognition in conversations (ERC), which involves identifying the emotional state of each utterance within a dialogue, plays a vital role in developing empathetic artificial intelligence systems. In practical applications, such as video-based recruitment interviews, customer service, health monitoring, intelligent personal assistants, and online education, ERC can facilitate the analysis of emotional cues, improve decision-making processes, and enhance user interaction and satisfaction. Current multimodal emotion recognition research faces several challenges, such as ineffective emotional information extraction from single modalities, underused complementary features, and inter-modal redundancy. To tackle these issues, this paper introduces a cross-modal gated attention mechanism for emotion recognition. The method extracts and fuses visual, textual, and auditory features to enhance accuracy and stability. A cross-modal guided gating mechanism is designed to strengthen single-modality features and utilize a third modality to improve bimodal feature fusion, boosting multimodal feature representation. Furthermore, a cross-modal distillation loss function is proposed to reduce redundancy and improve feature discrimination. This function employs a dual-supervision mechanism with teacher and student models, ensuring consistency in single-modal, bimodal, and trimodal feature representations. Experimental results on the IEMOCAP and MELD datasets indicate that the proposed method achieves higher accuracy and comparable F1 scores than existing approaches, highlighting its effectiveness in capturing multimodal dependencies and balancing modality contributions.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"30004\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357892/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-11989-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-11989-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Cross-modal gated feature enhancement for multimodal emotion recognition in conversations.
Emotion recognition in conversations (ERC), which involves identifying the emotional state of each utterance within a dialogue, plays a vital role in developing empathetic artificial intelligence systems. In practical applications, such as video-based recruitment interviews, customer service, health monitoring, intelligent personal assistants, and online education, ERC can facilitate the analysis of emotional cues, improve decision-making processes, and enhance user interaction and satisfaction. Current multimodal emotion recognition research faces several challenges, such as ineffective emotional information extraction from single modalities, underused complementary features, and inter-modal redundancy. To tackle these issues, this paper introduces a cross-modal gated attention mechanism for emotion recognition. The method extracts and fuses visual, textual, and auditory features to enhance accuracy and stability. A cross-modal guided gating mechanism is designed to strengthen single-modality features and utilize a third modality to improve bimodal feature fusion, boosting multimodal feature representation. Furthermore, a cross-modal distillation loss function is proposed to reduce redundancy and improve feature discrimination. This function employs a dual-supervision mechanism with teacher and student models, ensuring consistency in single-modal, bimodal, and trimodal feature representations. Experimental results on the IEMOCAP and MELD datasets indicate that the proposed method achieves higher accuracy and comparable F1 scores than existing approaches, highlighting its effectiveness in capturing multimodal dependencies and balancing modality contributions.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.