优化智能电网需求响应:优先级感知动态定价和负荷调度的Stackelberg博弈框架

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Syed Ashraf Ali, Sohail Imran Saeed, Sanaullah Ahmad, Muhammad Waqas, Syed Haider Ali, Dilawar Shah, Shujaat Ali, Muhammad Tahir
{"title":"优化智能电网需求响应:优先级感知动态定价和负荷调度的Stackelberg博弈框架","authors":"Syed Ashraf Ali,&nbsp;Sohail Imran Saeed,&nbsp;Sanaullah Ahmad,&nbsp;Muhammad Waqas,&nbsp;Syed Haider Ali,&nbsp;Dilawar Shah,&nbsp;Shujaat Ali,&nbsp;Muhammad Tahir","doi":"10.1002/eng2.70341","DOIUrl":null,"url":null,"abstract":"<p>Modern power systems face increasing complexity due to fluctuating demand and the intermittent nature of renewable energy sources. To address these challenges, this paper introduces a novel Stackelberg game-theoretic framework for intelligent demand response (DR) in smart grids. Our approach models hierarchical interaction between energy providers (leaders) and consumers (followers), incorporating priority-aware load scheduling and real-time feedback loops. Consumers are classified into priority and non-priority categories. A Markov chain-based behavior model captures stochastic user adaptation, enabling dynamic price adjustment. Simulations over 1, 7, and 30-day horizons in MATLAB demonstrate significant improvements: A 22% reduction in operational costs and a 15% decrease in peak-to-average ratio (PAR). The framework converges efficiently and ensures adherence to the grid capacity. These findings demonstrate the effectiveness of our adaptive and scalable solution. Unlike existing Stackelberg-based models, our approach uniquely integrates real-time feedback, priority-based user classification, and a stochastic Markov behavior model to enhance pricing responsiveness, grid reliability, and fairness across diverse consumer types.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70341","citationCount":"0","resultStr":"{\"title\":\"Optimizing Smart Grid Demand Response: A Stackelberg Game Framework for Priority-Aware Dynamic Pricing and Load Scheduling\",\"authors\":\"Syed Ashraf Ali,&nbsp;Sohail Imran Saeed,&nbsp;Sanaullah Ahmad,&nbsp;Muhammad Waqas,&nbsp;Syed Haider Ali,&nbsp;Dilawar Shah,&nbsp;Shujaat Ali,&nbsp;Muhammad Tahir\",\"doi\":\"10.1002/eng2.70341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern power systems face increasing complexity due to fluctuating demand and the intermittent nature of renewable energy sources. To address these challenges, this paper introduces a novel Stackelberg game-theoretic framework for intelligent demand response (DR) in smart grids. Our approach models hierarchical interaction between energy providers (leaders) and consumers (followers), incorporating priority-aware load scheduling and real-time feedback loops. Consumers are classified into priority and non-priority categories. A Markov chain-based behavior model captures stochastic user adaptation, enabling dynamic price adjustment. Simulations over 1, 7, and 30-day horizons in MATLAB demonstrate significant improvements: A 22% reduction in operational costs and a 15% decrease in peak-to-average ratio (PAR). The framework converges efficiently and ensures adherence to the grid capacity. These findings demonstrate the effectiveness of our adaptive and scalable solution. Unlike existing Stackelberg-based models, our approach uniquely integrates real-time feedback, priority-based user classification, and a stochastic Markov behavior model to enhance pricing responsiveness, grid reliability, and fairness across diverse consumer types.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70341\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于需求的波动和可再生能源的间歇性,现代电力系统面临着越来越复杂的问题。为了解决这些挑战,本文引入了一种新的Stackelberg博弈论框架,用于智能电网中的智能需求响应(DR)。我们的方法模拟能源供应商(领导者)和消费者(追随者)之间的分层互动,结合优先级感知负载调度和实时反馈循环。消费者被分为优先级和非优先级两类。基于马尔可夫链的行为模型捕获随机用户适应,实现动态价格调整。在MATLAB中进行的1、7和30天的模拟显示了显著的改进:运营成本降低22%,峰值平均比(PAR)降低15%。该框架有效地收敛并确保遵守网格容量。这些发现证明了我们的自适应和可扩展解决方案的有效性。与现有的基于stackelberg的模型不同,我们的方法独特地集成了实时反馈、基于优先级的用户分类和随机马尔可夫行为模型,以提高不同消费者类型的定价响应能力、电网可靠性和公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing Smart Grid Demand Response: A Stackelberg Game Framework for Priority-Aware Dynamic Pricing and Load Scheduling

Optimizing Smart Grid Demand Response: A Stackelberg Game Framework for Priority-Aware Dynamic Pricing and Load Scheduling

Modern power systems face increasing complexity due to fluctuating demand and the intermittent nature of renewable energy sources. To address these challenges, this paper introduces a novel Stackelberg game-theoretic framework for intelligent demand response (DR) in smart grids. Our approach models hierarchical interaction between energy providers (leaders) and consumers (followers), incorporating priority-aware load scheduling and real-time feedback loops. Consumers are classified into priority and non-priority categories. A Markov chain-based behavior model captures stochastic user adaptation, enabling dynamic price adjustment. Simulations over 1, 7, and 30-day horizons in MATLAB demonstrate significant improvements: A 22% reduction in operational costs and a 15% decrease in peak-to-average ratio (PAR). The framework converges efficiently and ensures adherence to the grid capacity. These findings demonstrate the effectiveness of our adaptive and scalable solution. Unlike existing Stackelberg-based models, our approach uniquely integrates real-time feedback, priority-based user classification, and a stochastic Markov behavior model to enhance pricing responsiveness, grid reliability, and fairness across diverse consumer types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信