Saravanan Chandrasekaran, Surbhi Bhatia Khan, Muskan Gupta, T. R. Mahesh, Abdulmajeed Alqhatani, Ahlam Almusharraf
{"title":"基于mri的阿尔茨海默病分期精确分类的增强深度学习框架","authors":"Saravanan Chandrasekaran, Surbhi Bhatia Khan, Muskan Gupta, T. R. Mahesh, Abdulmajeed Alqhatani, Ahlam Almusharraf","doi":"10.1111/coin.70123","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Alzheimer's disease (AD) diagnosis using MRI scans must be very accurate since the subtle differences throughout the course of the disease are difficult to identify. Traditional approaches are not effective, and new computational techniques are required that can provide fast and accurate diagnosis. In this paper, a novel deep learning methodology that greatly enhances the sensitivity and specificity of AD stage identification by analyzing in-depth MRI scans is proposed. The model applies a novel Sequential Convolutional Neural Network (CNN) architecture, which has been deeply trained on the “Augmented Alzheimer MRI Dataset” made available by Kaggle, to integrate various layers of depth and complexity to identify and scan in-depth features on MRI images. Major enhancements include the use of learning rate schedulers and dropout regularization to fine-tune training as well as avoid overfitting, with a diagnosis accuracy of 94.2%. This level of accuracy not only makes diagnostic processes easier but also allows for early detection of Alzheimer's phases, which is crucial for timely interventions and effective management of the condition. The model is rigorously trained on a large set of augmented data with varying levels of AD to guarantee robustness and generalizability in various demographic and clinical settings. Batch normalization and higher-order activation functions allow faster and stable convergence of training, and thus the model is more efficient and scalable. Application of this model to the clinic has the potential to sharply reduce time to diagnosis, lessen dependence on radiological expertise, and offer a high-accuracy, scalable imaging device enabling early and accurate treatment in Alzheimer's care. This innovation represents a significant next phase in medical imaging with artificial intelligence, and it offers a highly effective tool for fine detection and staging of Alzheimer's disease.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Deep Learning Framework for Precise MRI-Based Alzheimer's Disease Stage Classification\",\"authors\":\"Saravanan Chandrasekaran, Surbhi Bhatia Khan, Muskan Gupta, T. R. Mahesh, Abdulmajeed Alqhatani, Ahlam Almusharraf\",\"doi\":\"10.1111/coin.70123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Alzheimer's disease (AD) diagnosis using MRI scans must be very accurate since the subtle differences throughout the course of the disease are difficult to identify. Traditional approaches are not effective, and new computational techniques are required that can provide fast and accurate diagnosis. In this paper, a novel deep learning methodology that greatly enhances the sensitivity and specificity of AD stage identification by analyzing in-depth MRI scans is proposed. The model applies a novel Sequential Convolutional Neural Network (CNN) architecture, which has been deeply trained on the “Augmented Alzheimer MRI Dataset” made available by Kaggle, to integrate various layers of depth and complexity to identify and scan in-depth features on MRI images. Major enhancements include the use of learning rate schedulers and dropout regularization to fine-tune training as well as avoid overfitting, with a diagnosis accuracy of 94.2%. This level of accuracy not only makes diagnostic processes easier but also allows for early detection of Alzheimer's phases, which is crucial for timely interventions and effective management of the condition. The model is rigorously trained on a large set of augmented data with varying levels of AD to guarantee robustness and generalizability in various demographic and clinical settings. Batch normalization and higher-order activation functions allow faster and stable convergence of training, and thus the model is more efficient and scalable. Application of this model to the clinic has the potential to sharply reduce time to diagnosis, lessen dependence on radiological expertise, and offer a high-accuracy, scalable imaging device enabling early and accurate treatment in Alzheimer's care. This innovation represents a significant next phase in medical imaging with artificial intelligence, and it offers a highly effective tool for fine detection and staging of Alzheimer's disease.</p>\\n </div>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"41 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70123\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70123","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Enhanced Deep Learning Framework for Precise MRI-Based Alzheimer's Disease Stage Classification
Alzheimer's disease (AD) diagnosis using MRI scans must be very accurate since the subtle differences throughout the course of the disease are difficult to identify. Traditional approaches are not effective, and new computational techniques are required that can provide fast and accurate diagnosis. In this paper, a novel deep learning methodology that greatly enhances the sensitivity and specificity of AD stage identification by analyzing in-depth MRI scans is proposed. The model applies a novel Sequential Convolutional Neural Network (CNN) architecture, which has been deeply trained on the “Augmented Alzheimer MRI Dataset” made available by Kaggle, to integrate various layers of depth and complexity to identify and scan in-depth features on MRI images. Major enhancements include the use of learning rate schedulers and dropout regularization to fine-tune training as well as avoid overfitting, with a diagnosis accuracy of 94.2%. This level of accuracy not only makes diagnostic processes easier but also allows for early detection of Alzheimer's phases, which is crucial for timely interventions and effective management of the condition. The model is rigorously trained on a large set of augmented data with varying levels of AD to guarantee robustness and generalizability in various demographic and clinical settings. Batch normalization and higher-order activation functions allow faster and stable convergence of training, and thus the model is more efficient and scalable. Application of this model to the clinic has the potential to sharply reduce time to diagnosis, lessen dependence on radiological expertise, and offer a high-accuracy, scalable imaging device enabling early and accurate treatment in Alzheimer's care. This innovation represents a significant next phase in medical imaging with artificial intelligence, and it offers a highly effective tool for fine detection and staging of Alzheimer's disease.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.