离散声发射解释中机器学习的当前趋势和应用综述

IF 2.4 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Maël Pénicaud, Florence Lequien, Clément Fisher, Arnaud Recoquillay
{"title":"离散声发射解释中机器学习的当前趋势和应用综述","authors":"Maël Pénicaud,&nbsp;Florence Lequien,&nbsp;Clément Fisher,&nbsp;Arnaud Recoquillay","doi":"10.1007/s10921-025-01247-0","DOIUrl":null,"url":null,"abstract":"<div><p>Acoustic Emission (AE) is a well-established and recognised technique for monitoring the degradation of a variety of structures. It is used in a variety of applications, including fatigue monitoring, corrosion monitoring, or detection of pressure leaks. As sensors evolve and databases grow, analysis allows for a better interpretation and understanding of phenomena. Specifically, the usage of Machine Learning (ML) algorithms has proven to be a major tool for interpreting signals. This paper reviews the current usage of ML algorithms used in major Acoustic Emission applications to interpret damage mechanisms, exploring how ML allows the study of more complex phenomena and structures, discussing the conditions, precautions and limitations to its usage as well as future prospects and potentials.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-025-01247-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Review of Current Trends and Uses of Machine Learning for Discrete Acoustic Emission Interpretation\",\"authors\":\"Maël Pénicaud,&nbsp;Florence Lequien,&nbsp;Clément Fisher,&nbsp;Arnaud Recoquillay\",\"doi\":\"10.1007/s10921-025-01247-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acoustic Emission (AE) is a well-established and recognised technique for monitoring the degradation of a variety of structures. It is used in a variety of applications, including fatigue monitoring, corrosion monitoring, or detection of pressure leaks. As sensors evolve and databases grow, analysis allows for a better interpretation and understanding of phenomena. Specifically, the usage of Machine Learning (ML) algorithms has proven to be a major tool for interpreting signals. This paper reviews the current usage of ML algorithms used in major Acoustic Emission applications to interpret damage mechanisms, exploring how ML allows the study of more complex phenomena and structures, discussing the conditions, precautions and limitations to its usage as well as future prospects and potentials.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10921-025-01247-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-025-01247-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01247-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

声发射(AE)是一种完善和公认的技术,用于监测各种结构的退化。它用于各种应用,包括疲劳监测、腐蚀监测或压力泄漏检测。随着传感器的发展和数据库的增长,分析可以更好地解释和理解现象。具体来说,机器学习(ML)算法的使用已被证明是解释信号的主要工具。本文综述了目前在主要声发射应用中用于解释损伤机制的机器学习算法的使用情况,探讨了机器学习如何允许研究更复杂的现象和结构,讨论了机器学习使用的条件、注意事项和限制,以及未来的前景和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of Current Trends and Uses of Machine Learning for Discrete Acoustic Emission Interpretation

Acoustic Emission (AE) is a well-established and recognised technique for monitoring the degradation of a variety of structures. It is used in a variety of applications, including fatigue monitoring, corrosion monitoring, or detection of pressure leaks. As sensors evolve and databases grow, analysis allows for a better interpretation and understanding of phenomena. Specifically, the usage of Machine Learning (ML) algorithms has proven to be a major tool for interpreting signals. This paper reviews the current usage of ML algorithms used in major Acoustic Emission applications to interpret damage mechanisms, exploring how ML allows the study of more complex phenomena and structures, discussing the conditions, precautions and limitations to its usage as well as future prospects and potentials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信