基于swinir的稀疏视图计算机断层扫描双域重建

IF 2.4 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Jonas Van der Rauwelaert, Caroline Bossuyt, Stijn E. Verleden, Jan Sijbers
{"title":"基于swinir的稀疏视图计算机断层扫描双域重建","authors":"Jonas Van der Rauwelaert,&nbsp;Caroline Bossuyt,&nbsp;Stijn E. Verleden,&nbsp;Jan Sijbers","doi":"10.1007/s10921-025-01244-3","DOIUrl":null,"url":null,"abstract":"<div><p>Sparse-view computed tomography (CT) remains a significant challenge due to undersampling artifacts and loss of structural detail in the reconstructed images. In this work, we introduce DDSwinIR, a dual-domain reconstruction framework that leverages Swin Transformer-based architectures to recover high-quality CT images from severely undersampled sinograms. DDSwinIR operates in three stages: sinogram upsampling, deep learning-based reconstruction, and a residual refinement module that addresses domain-specific inconsistencies. While previous dual-domain deep learning (DD-DL) approaches improve reconstruction quality, they lack a systematic analysis of component contributions and do not generalize to unseen number of projections. DDSwinIR addresses these gaps through a modular and transparent design, allowing quantification of each network’s module. Our results highlight that early application of data consistency, especially after initial sinogram reconstruction, yields the most substantial and reliable improvements, particularly under extreme sparsity. We also introduce sparse-view concatenation, which enhances performance by improving feature propagation in highly undersampled settings. Extensive evaluation across varying numbers of projections reveal strong generalization when trained on sparse data and tested on denser configurations, but not vice versa, underscoring the importance of low-sparsity training. Compared to conventional reconstruction methods, DDSwinIR achieves superior artifact suppression and detail preservation. This work establishes DDSwinIR as an interpretable and generalizable solution for sparse-view CT, responding to the need for DD-DL reconstruction frameworks for practical applicability.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-025-01244-3.pdf","citationCount":"0","resultStr":"{\"title\":\"SwinIR-based Dual-Domain Reconstruction for Sparse-View Computed Tomography\",\"authors\":\"Jonas Van der Rauwelaert,&nbsp;Caroline Bossuyt,&nbsp;Stijn E. Verleden,&nbsp;Jan Sijbers\",\"doi\":\"10.1007/s10921-025-01244-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sparse-view computed tomography (CT) remains a significant challenge due to undersampling artifacts and loss of structural detail in the reconstructed images. In this work, we introduce DDSwinIR, a dual-domain reconstruction framework that leverages Swin Transformer-based architectures to recover high-quality CT images from severely undersampled sinograms. DDSwinIR operates in three stages: sinogram upsampling, deep learning-based reconstruction, and a residual refinement module that addresses domain-specific inconsistencies. While previous dual-domain deep learning (DD-DL) approaches improve reconstruction quality, they lack a systematic analysis of component contributions and do not generalize to unseen number of projections. DDSwinIR addresses these gaps through a modular and transparent design, allowing quantification of each network’s module. Our results highlight that early application of data consistency, especially after initial sinogram reconstruction, yields the most substantial and reliable improvements, particularly under extreme sparsity. We also introduce sparse-view concatenation, which enhances performance by improving feature propagation in highly undersampled settings. Extensive evaluation across varying numbers of projections reveal strong generalization when trained on sparse data and tested on denser configurations, but not vice versa, underscoring the importance of low-sparsity training. Compared to conventional reconstruction methods, DDSwinIR achieves superior artifact suppression and detail preservation. This work establishes DDSwinIR as an interpretable and generalizable solution for sparse-view CT, responding to the need for DD-DL reconstruction frameworks for practical applicability.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10921-025-01244-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-025-01244-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01244-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

由于采样不足和重建图像中结构细节的丢失,稀疏视图计算机断层扫描(CT)仍然是一个重大挑战。在这项工作中,我们介绍了DDSwinIR,这是一个双域重建框架,利用基于Swin变压器的架构从严重欠采样的正弦图中恢复高质量的CT图像。DDSwinIR分为三个阶段:正弦图上采样,基于深度学习的重建,以及解决特定领域不一致性的残差细化模块。虽然以前的双域深度学习(DD-DL)方法提高了重建质量,但它们缺乏对组件贡献的系统分析,并且不能推广到未知数量的预测。DDSwinIR通过模块化和透明的设计解决了这些差距,允许每个网络模块的量化。我们的研究结果强调,早期应用数据一致性,特别是在初始正弦图重建之后,产生最实质性和最可靠的改进,特别是在极端稀疏性下。我们还引入了稀疏视图连接,它通过改善高度欠采样设置中的特征传播来提高性能。在不同数量的预测之间进行广泛的评估,当在稀疏数据上进行训练并在更密集的配置上进行测试时,会显示出很强的泛化,但反之则不然,这强调了低稀疏性训练的重要性。与传统重建方法相比,DDSwinIR具有更好的伪影抑制和细节保存效果。这项工作建立了DDSwinIR作为稀疏视图CT的可解释和可推广的解决方案,响应了对实际应用的DD-DL重建框架的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SwinIR-based Dual-Domain Reconstruction for Sparse-View Computed Tomography

Sparse-view computed tomography (CT) remains a significant challenge due to undersampling artifacts and loss of structural detail in the reconstructed images. In this work, we introduce DDSwinIR, a dual-domain reconstruction framework that leverages Swin Transformer-based architectures to recover high-quality CT images from severely undersampled sinograms. DDSwinIR operates in three stages: sinogram upsampling, deep learning-based reconstruction, and a residual refinement module that addresses domain-specific inconsistencies. While previous dual-domain deep learning (DD-DL) approaches improve reconstruction quality, they lack a systematic analysis of component contributions and do not generalize to unseen number of projections. DDSwinIR addresses these gaps through a modular and transparent design, allowing quantification of each network’s module. Our results highlight that early application of data consistency, especially after initial sinogram reconstruction, yields the most substantial and reliable improvements, particularly under extreme sparsity. We also introduce sparse-view concatenation, which enhances performance by improving feature propagation in highly undersampled settings. Extensive evaluation across varying numbers of projections reveal strong generalization when trained on sparse data and tested on denser configurations, but not vice versa, underscoring the importance of low-sparsity training. Compared to conventional reconstruction methods, DDSwinIR achieves superior artifact suppression and detail preservation. This work establishes DDSwinIR as an interpretable and generalizable solution for sparse-view CT, responding to the need for DD-DL reconstruction frameworks for practical applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信