机动车汽油和蒸气排放的挥发性有机化合物对环境的影响:成分分析和影响

IF 1.8 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Sruthi Jayaraj, S. M. Shiva Nagendra
{"title":"机动车汽油和蒸气排放的挥发性有机化合物对环境的影响:成分分析和影响","authors":"Sruthi Jayaraj,&nbsp;S. M. Shiva Nagendra","doi":"10.1007/s10874-025-09480-7","DOIUrl":null,"url":null,"abstract":"<div><p>Fuel composition and fuel type are crucial in determining the evaporative and combustion process emissions. This study examines the composition of Volatile Organic Compounds (VOCs) in the liquid fuel and headspace vapour of three commercially available regular and premium grade gasoline in India. More than 200 compounds were detected in the liquid samples, and 32 compounds were chosen as the target compounds based on the literature. The liquid normal grade fuel composition showed dominance of aromatics, accounting for about 50–64% of the total compounds, followed by isoparaffins (12–17%), paraffins (8–12%), naphthenes (4.5-6%), olefins (2–3%), oxygenates (5–8%) of the total detected compounds and others or unknown compounds. The premium gasoline showed higher concentrations of oxygenates and aromatics than the normal gasoline. Aromatics contributed 88% in the headspace vapour composition of premium grade and accounted for 86.9% of normal gasoline. VOCs are the primary precursors of ozone and secondary organic aerosols in ambient air; hence the environmental impacts like the ozone forming potential (OFP) and secondary organic aerosol formation potential (SOAP) of the target compounds were also determined in the study. The aromatics and paraffins showed the highest OFP and SOAP compared to the naphthenes and oxygenates. These results will aid in identifying the compounds that can be expected from fugitive emissions, define sources for receptor modeling, and determine the health and environmental risks associated with evaporative emissions.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"82 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental impact of VOC emissions from motor vehicle gasoline and vapours: composition analysis and implications\",\"authors\":\"Sruthi Jayaraj,&nbsp;S. M. Shiva Nagendra\",\"doi\":\"10.1007/s10874-025-09480-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fuel composition and fuel type are crucial in determining the evaporative and combustion process emissions. This study examines the composition of Volatile Organic Compounds (VOCs) in the liquid fuel and headspace vapour of three commercially available regular and premium grade gasoline in India. More than 200 compounds were detected in the liquid samples, and 32 compounds were chosen as the target compounds based on the literature. The liquid normal grade fuel composition showed dominance of aromatics, accounting for about 50–64% of the total compounds, followed by isoparaffins (12–17%), paraffins (8–12%), naphthenes (4.5-6%), olefins (2–3%), oxygenates (5–8%) of the total detected compounds and others or unknown compounds. The premium gasoline showed higher concentrations of oxygenates and aromatics than the normal gasoline. Aromatics contributed 88% in the headspace vapour composition of premium grade and accounted for 86.9% of normal gasoline. VOCs are the primary precursors of ozone and secondary organic aerosols in ambient air; hence the environmental impacts like the ozone forming potential (OFP) and secondary organic aerosol formation potential (SOAP) of the target compounds were also determined in the study. The aromatics and paraffins showed the highest OFP and SOAP compared to the naphthenes and oxygenates. These results will aid in identifying the compounds that can be expected from fugitive emissions, define sources for receptor modeling, and determine the health and environmental risks associated with evaporative emissions.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"82 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-025-09480-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-025-09480-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

燃料成分和燃料类型是决定蒸发和燃烧过程排放的关键。本研究考察了印度三种商用普通汽油和高档汽油的液体燃料和顶空蒸汽中挥发性有机化合物(VOCs)的组成。在液体样品中检测到200多种化合物,结合文献选择32种化合物作为目标化合物。液体普通级燃料成分以芳烃为主,约占总化合物的50-64%,其次是异石蜡(12-17%)、石蜡(8-12%)、环烷(4.5-6%)、烯烃(2-3%)、含氧化合物(5-8%)和其他或未知化合物。优质汽油中含氧化合物和芳烃的浓度高于普通汽油。芳烃在高档汽油顶空汽相中占88%,在普通汽油顶空汽相中占86.9%。VOCs是环境空气中臭氧和二次有机气溶胶的主要前体;因此,研究还确定了目标化合物的臭氧形成势(OFP)和二次有机气溶胶形成势(SOAP)等环境影响。与环烷和含氧化合物相比,芳烃和石蜡具有最高的OFP和SOAP。这些结果将有助于确定可从逸散性排放中预期产生的化合物,确定受体建模的来源,并确定与蒸发排放相关的健康和环境风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental impact of VOC emissions from motor vehicle gasoline and vapours: composition analysis and implications

Fuel composition and fuel type are crucial in determining the evaporative and combustion process emissions. This study examines the composition of Volatile Organic Compounds (VOCs) in the liquid fuel and headspace vapour of three commercially available regular and premium grade gasoline in India. More than 200 compounds were detected in the liquid samples, and 32 compounds were chosen as the target compounds based on the literature. The liquid normal grade fuel composition showed dominance of aromatics, accounting for about 50–64% of the total compounds, followed by isoparaffins (12–17%), paraffins (8–12%), naphthenes (4.5-6%), olefins (2–3%), oxygenates (5–8%) of the total detected compounds and others or unknown compounds. The premium gasoline showed higher concentrations of oxygenates and aromatics than the normal gasoline. Aromatics contributed 88% in the headspace vapour composition of premium grade and accounted for 86.9% of normal gasoline. VOCs are the primary precursors of ozone and secondary organic aerosols in ambient air; hence the environmental impacts like the ozone forming potential (OFP) and secondary organic aerosol formation potential (SOAP) of the target compounds were also determined in the study. The aromatics and paraffins showed the highest OFP and SOAP compared to the naphthenes and oxygenates. These results will aid in identifying the compounds that can be expected from fugitive emissions, define sources for receptor modeling, and determine the health and environmental risks associated with evaporative emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信