Min-Seok Shin , Sang-Wook Yeh , Hak-Jun Lee , Chang-Eui Park
{"title":"东亚地区气候变量与植被碳吸收关系的变化","authors":"Min-Seok Shin , Sang-Wook Yeh , Hak-Jun Lee , Chang-Eui Park","doi":"10.1016/j.ecoinf.2025.103375","DOIUrl":null,"url":null,"abstract":"<div><div>To understand the carbon cycle in East Asia in the context of rising CO<sub>2</sub>, we analyzed a land carbon cycle dataset (TRENDY) from 1982 to 2020, examining the relationship between vegetation carbon uptake and two climate variables (i.e. precipitation and surface temperature) during the vegetation growing season (March to September). Our results show that, since the early 2000s, the relationship between gross primary production (GPP) and surface temperature has strengthened, while the relationship between GPP and precipitation has weakened in East Asia. Further analyses suggest that this strengthening of the GPP-surface temperature relationship is primarily due to a combination of CO<sub>2</sub> fertilization effects and significant increases in surface temperature, which lead to reduced soil moisture and increased water use efficiency in vegetation. This appears to result in an increase in GPP in the long term along with the absence of significant changes in precipitation. As a result, vegetation carbon uptake is less dependent on precipitation and more correlated with surface temperature in the recent decades. This result indicates that the relationship between vegetation carbon uptake and climate variables is non-stationary, and therefore requires careful attention to properly develop carbon mitigation plans through afforestation.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"91 ","pages":"Article 103375"},"PeriodicalIF":7.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in the relationship between climate variables and vegetation carbon uptake in East Asia\",\"authors\":\"Min-Seok Shin , Sang-Wook Yeh , Hak-Jun Lee , Chang-Eui Park\",\"doi\":\"10.1016/j.ecoinf.2025.103375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To understand the carbon cycle in East Asia in the context of rising CO<sub>2</sub>, we analyzed a land carbon cycle dataset (TRENDY) from 1982 to 2020, examining the relationship between vegetation carbon uptake and two climate variables (i.e. precipitation and surface temperature) during the vegetation growing season (March to September). Our results show that, since the early 2000s, the relationship between gross primary production (GPP) and surface temperature has strengthened, while the relationship between GPP and precipitation has weakened in East Asia. Further analyses suggest that this strengthening of the GPP-surface temperature relationship is primarily due to a combination of CO<sub>2</sub> fertilization effects and significant increases in surface temperature, which lead to reduced soil moisture and increased water use efficiency in vegetation. This appears to result in an increase in GPP in the long term along with the absence of significant changes in precipitation. As a result, vegetation carbon uptake is less dependent on precipitation and more correlated with surface temperature in the recent decades. This result indicates that the relationship between vegetation carbon uptake and climate variables is non-stationary, and therefore requires careful attention to properly develop carbon mitigation plans through afforestation.</div></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":\"91 \",\"pages\":\"Article 103375\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157495412500384X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157495412500384X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Changes in the relationship between climate variables and vegetation carbon uptake in East Asia
To understand the carbon cycle in East Asia in the context of rising CO2, we analyzed a land carbon cycle dataset (TRENDY) from 1982 to 2020, examining the relationship between vegetation carbon uptake and two climate variables (i.e. precipitation and surface temperature) during the vegetation growing season (March to September). Our results show that, since the early 2000s, the relationship between gross primary production (GPP) and surface temperature has strengthened, while the relationship between GPP and precipitation has weakened in East Asia. Further analyses suggest that this strengthening of the GPP-surface temperature relationship is primarily due to a combination of CO2 fertilization effects and significant increases in surface temperature, which lead to reduced soil moisture and increased water use efficiency in vegetation. This appears to result in an increase in GPP in the long term along with the absence of significant changes in precipitation. As a result, vegetation carbon uptake is less dependent on precipitation and more correlated with surface temperature in the recent decades. This result indicates that the relationship between vegetation carbon uptake and climate variables is non-stationary, and therefore requires careful attention to properly develop carbon mitigation plans through afforestation.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.