Abdulmohsen Daham Alruwaili , Nadeem Azhar , Abdul Jawad
{"title":"研究f(R,∇R)引力中的重子熵比现象","authors":"Abdulmohsen Daham Alruwaili , Nadeem Azhar , Abdul Jawad","doi":"10.1016/j.nuclphysb.2025.117067","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores baryogenesis within a modified gravitational framework where the action incorporates a non-local kernel dependent on the Ricci scalar <em>R</em> and its covariant derivative ∇<em>R</em>. This extension, referred to as <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>∇</mi><mi>R</mi><mo>)</mo></math></span> gravity, generalizes traditional <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> theories by introducing additional derivative terms that may influence early-universe dynamics. Within this framework, we examine four distinct forms of the cosmological scale factor: (i) an intermediate scaling solution, (ii) a conventional power-law expansion, (iii) a generalized hybrid evolution combining both power-law and exponential growth terms and (iv) logamediate scale factor. We introduce a charge-parity (CP) violating interaction term that scales linearly with the spacetime derivative of the combined Ricci scalar and its covariant derivative, expressed as <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>+</mo><mi>∇</mi><mi>R</mi><mo>)</mo></math></span>. Through numerical computation, we determine the resulting baryon asymmetry by evaluating the dimensionless ratio <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>, where <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> represents the baryon number density and <em>s</em> denotes the entropy density of the universe. We quantitatively compare our theoretical predictions for the baryon-to-entropy ratio, <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>, with the current observational constraint of <span><math><mn>9.42</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></math></span>. Notably, our numerical results demonstrate remarkable agreement with this empirically established value, supporting the viability of our modified gravitational framework in explaining the observed baryon asymmetry of the universe.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 117067"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating baryon to entropy ratio phenomenon in f(R,∇R) gravity\",\"authors\":\"Abdulmohsen Daham Alruwaili , Nadeem Azhar , Abdul Jawad\",\"doi\":\"10.1016/j.nuclphysb.2025.117067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores baryogenesis within a modified gravitational framework where the action incorporates a non-local kernel dependent on the Ricci scalar <em>R</em> and its covariant derivative ∇<em>R</em>. This extension, referred to as <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>∇</mi><mi>R</mi><mo>)</mo></math></span> gravity, generalizes traditional <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> theories by introducing additional derivative terms that may influence early-universe dynamics. Within this framework, we examine four distinct forms of the cosmological scale factor: (i) an intermediate scaling solution, (ii) a conventional power-law expansion, (iii) a generalized hybrid evolution combining both power-law and exponential growth terms and (iv) logamediate scale factor. We introduce a charge-parity (CP) violating interaction term that scales linearly with the spacetime derivative of the combined Ricci scalar and its covariant derivative, expressed as <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>+</mo><mi>∇</mi><mi>R</mi><mo>)</mo></math></span>. Through numerical computation, we determine the resulting baryon asymmetry by evaluating the dimensionless ratio <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>, where <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> represents the baryon number density and <em>s</em> denotes the entropy density of the universe. We quantitatively compare our theoretical predictions for the baryon-to-entropy ratio, <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>, with the current observational constraint of <span><math><mn>9.42</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></math></span>. Notably, our numerical results demonstrate remarkable agreement with this empirically established value, supporting the viability of our modified gravitational framework in explaining the observed baryon asymmetry of the universe.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1018 \",\"pages\":\"Article 117067\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325002767\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325002767","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Investigating baryon to entropy ratio phenomenon in f(R,∇R) gravity
This study explores baryogenesis within a modified gravitational framework where the action incorporates a non-local kernel dependent on the Ricci scalar R and its covariant derivative ∇R. This extension, referred to as gravity, generalizes traditional theories by introducing additional derivative terms that may influence early-universe dynamics. Within this framework, we examine four distinct forms of the cosmological scale factor: (i) an intermediate scaling solution, (ii) a conventional power-law expansion, (iii) a generalized hybrid evolution combining both power-law and exponential growth terms and (iv) logamediate scale factor. We introduce a charge-parity (CP) violating interaction term that scales linearly with the spacetime derivative of the combined Ricci scalar and its covariant derivative, expressed as . Through numerical computation, we determine the resulting baryon asymmetry by evaluating the dimensionless ratio , where represents the baryon number density and s denotes the entropy density of the universe. We quantitatively compare our theoretical predictions for the baryon-to-entropy ratio, , with the current observational constraint of . Notably, our numerical results demonstrate remarkable agreement with this empirically established value, supporting the viability of our modified gravitational framework in explaining the observed baryon asymmetry of the universe.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.