{"title":"完全超度量场的强u不变界和周期指标界","authors":"Shilpi Mandal","doi":"10.1016/j.jalgebra.2025.07.021","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>k</em> be a complete ultrametric field with <span><math><msub><mrow><mtext>dim</mtext></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><msqrt><mrow><mo>|</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>|</mo></mrow></msqrt><mo>)</mo><mo>=</mo><mi>n</mi></math></span> finite, with residue field <span><math><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, and char<span><math><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≠</mo><mn>2</mn></math></span>. We prove that <span><math><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>u</mi><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> be the strong <em>u</em>-invariant of <em>k</em>, then we further show that <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. Let <em>l</em> be a prime such that the char<span><math><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≠</mo><mi>l</mi></math></span>. If the <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>=</mo><mi>d</mi></math></span>, then we also show that <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mi>n</mi></math></span>. Let <em>C</em> be a curve over <em>k</em> and <span><math><mi>F</mi><mo>=</mo><mi>k</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. Then we show that any quadratic form over <em>F</em> with dimension <span><math><mo>></mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> is isotropic over <em>F</em>. We further show that if <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≤</mo><mi>d</mi></math></span> and <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mn>1</mn></math></span>, then <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mi>F</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 447-462"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong u-invariant and period-index bound for complete ultrametric fields\",\"authors\":\"Shilpi Mandal\",\"doi\":\"10.1016/j.jalgebra.2025.07.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>k</em> be a complete ultrametric field with <span><math><msub><mrow><mtext>dim</mtext></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><msqrt><mrow><mo>|</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>|</mo></mrow></msqrt><mo>)</mo><mo>=</mo><mi>n</mi></math></span> finite, with residue field <span><math><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, and char<span><math><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≠</mo><mn>2</mn></math></span>. We prove that <span><math><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>u</mi><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> be the strong <em>u</em>-invariant of <em>k</em>, then we further show that <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. Let <em>l</em> be a prime such that the char<span><math><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≠</mo><mi>l</mi></math></span>. If the <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>=</mo><mi>d</mi></math></span>, then we also show that <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mi>n</mi></math></span>. Let <em>C</em> be a curve over <em>k</em> and <span><math><mi>F</mi><mo>=</mo><mi>k</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. Then we show that any quadratic form over <em>F</em> with dimension <span><math><mo>></mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> is isotropic over <em>F</em>. We further show that if <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≤</mo><mi>d</mi></math></span> and <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mn>1</mn></math></span>, then <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mi>F</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 447-462\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004363\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004363","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Strong u-invariant and period-index bound for complete ultrametric fields
Let k be a complete ultrametric field with finite, with residue field , and char. We prove that . Let be the strong u-invariant of k, then we further show that . Let l be a prime such that the char. If the , then we also show that . Let C be a curve over k and . Then we show that any quadratic form over F with dimension is isotropic over F. We further show that if and , then .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.