完全超度量场的强u不变界和周期指标界

IF 0.8 2区 数学 Q2 MATHEMATICS
Shilpi Mandal
{"title":"完全超度量场的强u不变界和周期指标界","authors":"Shilpi Mandal","doi":"10.1016/j.jalgebra.2025.07.021","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>k</em> be a complete ultrametric field with <span><math><msub><mrow><mtext>dim</mtext></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><msqrt><mrow><mo>|</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>|</mo></mrow></msqrt><mo>)</mo><mo>=</mo><mi>n</mi></math></span> finite, with residue field <span><math><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, and char<span><math><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≠</mo><mn>2</mn></math></span>. We prove that <span><math><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>u</mi><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> be the strong <em>u</em>-invariant of <em>k</em>, then we further show that <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. Let <em>l</em> be a prime such that the char<span><math><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≠</mo><mi>l</mi></math></span>. If the <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>=</mo><mi>d</mi></math></span>, then we also show that <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mi>n</mi></math></span>. Let <em>C</em> be a curve over <em>k</em> and <span><math><mi>F</mi><mo>=</mo><mi>k</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. Then we show that any quadratic form over <em>F</em> with dimension <span><math><mo>&gt;</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> is isotropic over <em>F</em>. We further show that if <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≤</mo><mi>d</mi></math></span> and <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mn>1</mn></math></span>, then <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mi>F</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 447-462"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong u-invariant and period-index bound for complete ultrametric fields\",\"authors\":\"Shilpi Mandal\",\"doi\":\"10.1016/j.jalgebra.2025.07.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>k</em> be a complete ultrametric field with <span><math><msub><mrow><mtext>dim</mtext></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><msqrt><mrow><mo>|</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>|</mo></mrow></msqrt><mo>)</mo><mo>=</mo><mi>n</mi></math></span> finite, with residue field <span><math><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, and char<span><math><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≠</mo><mn>2</mn></math></span>. We prove that <span><math><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>u</mi><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> be the strong <em>u</em>-invariant of <em>k</em>, then we further show that <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>. Let <em>l</em> be a prime such that the char<span><math><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≠</mo><mi>l</mi></math></span>. If the <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>=</mo><mi>d</mi></math></span>, then we also show that <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mi>k</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mi>n</mi></math></span>. Let <em>C</em> be a curve over <em>k</em> and <span><math><mi>F</mi><mo>=</mo><mi>k</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. Then we show that any quadratic form over <em>F</em> with dimension <span><math><mo>&gt;</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> is isotropic over <em>F</em>. We further show that if <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≤</mo><mi>d</mi></math></span> and <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>T</mi><mo>)</mo><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mn>1</mn></math></span>, then <span><math><msub><mrow><mtext>Br</mtext></mrow><mrow><mi>l</mi></mrow></msub><mtext>dim</mtext><mo>(</mo><mi>F</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>+</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 447-462\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004363\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004363","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设k是一个完全超强场,其中dimQ(|k |)=n有限,残差场k ~,且char(k ~)≠2。证明了u(k)≤2nu(k ~)。设us(k)为k的强u不变量,则进一步证明us(k)≤2nus(k ~)。设l是一个质数使得(k ~)≠1。如果Brldim(k ~)=d,则我们也证明Brldim(k)≤d+n。设C是曲线除以k, F=k(C)然后证明了F上任何维数为>;2n+1us(k ~)的二次型在F上是各向同性的。进一步证明了如果Brldim(k ~)≤d且Brldim(k ~ (T))≤d+1,则Brldim(F)≤d+n+1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong u-invariant and period-index bound for complete ultrametric fields
Let k be a complete ultrametric field with dimQ(|k|)=n finite, with residue field k˜, and char(k˜)2. We prove that u(k)2nu(k˜). Let us(k) be the strong u-invariant of k, then we further show that us(k)2nus(k˜). Let l be a prime such that the char(k˜)l. If the Brldim(k˜)=d, then we also show that Brldim(k)d+n. Let C be a curve over k and F=k(C). Then we show that any quadratic form over F with dimension >2n+1us(k˜) is isotropic over F. We further show that if Brldim(k˜)d and Brldim(k˜(T))d+1, then Brldim(F)d+n+1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信