基于无人机的太阳能塔式电站实时状态监测仿真环境

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Alexander Schnerring , Rafal Broda , Adrian Winter , Michael Nieslony , Julian J. Krauth , Marc Röger , Sonja Kallio , Robert Pitz-Paal
{"title":"基于无人机的太阳能塔式电站实时状态监测仿真环境","authors":"Alexander Schnerring ,&nbsp;Rafal Broda ,&nbsp;Adrian Winter ,&nbsp;Michael Nieslony ,&nbsp;Julian J. Krauth ,&nbsp;Marc Röger ,&nbsp;Sonja Kallio ,&nbsp;Robert Pitz-Paal","doi":"10.1016/j.solener.2025.113803","DOIUrl":null,"url":null,"abstract":"<div><div>The development and testing of unmanned aerial vehicle (UAV)-based condition monitoring systems is time consuming, costly and poses safety risks. While numerous examples show that simulation environments are well suited to support the development process, existing environments fall short of simulating quantities specific to the condition monitoring of solar tower power plants. To bridge this gap, we present a simulation environment that provides quantities necessary to investigate such systems in simulation, prior to their application in real solar tower power plants. The presented environment models the state of the solar field and computes observations of the field and reflections of a point light source, as seen from a virtual camera. In addition, it allows for the navigation of a simulated UAV in the virtual solar field in response to realistic UAV control signals. The simulated concentrator corner points were found to match the concentrator corner points determined by a bundle adjustment measurement up to an <span><math><mrow><mtext>RMSE</mtext><mo>=</mo><mn>23</mn><mo>.</mo><mn>7</mn><mspace></mspace><mstyle><mi>m</mi><mi>m</mi></mstyle></mrow></math></span> before and <span><math><mrow><mtext>RMSE</mtext><mo>=</mo><mn>4</mn><mo>.</mo><mn>6</mn><mspace></mspace><mstyle><mi>m</mi><mi>m</mi></mstyle></mrow></math></span> after accounting for translational, rotational and scale errors. The simulated reflections of a point light source were found to match the measured reflections up to an <span><math><mtext>RMSE</mtext></math></span> of <span><math><mrow><mn>2</mn><mo>.</mo><mn>25</mn><mspace></mspace><mstyle><mi>m</mi><mi>r</mi><mi>a</mi><mi>d</mi></mstyle></mrow></math></span> in X-direction and <span><math><mrow><mn>2</mn><mo>.</mo><mn>09</mn><mspace></mspace><mstyle><mi>m</mi><mi>r</mi><mi>a</mi><mi>d</mi></mstyle></mrow></math></span> in Y-direction in the concentrator coordinate system. After eliminating errors in the camera position estimate, concentrator orientations and mirror surface slope errors, the remaining <span><math><mtext>RMSE</mtext></math></span> is <span><math><mrow><mn>0</mn><mo>.</mo><mn>35</mn><mspace></mspace><mstyle><mi>m</mi><mi>r</mi><mi>a</mi><mi>d</mi></mstyle></mrow></math></span> in X-direction and <span><math><mrow><mn>0</mn><mo>.</mo><mn>22</mn><mspace></mspace><mstyle><mi>m</mi><mi>r</mi><mi>a</mi><mi>d</mi></mstyle></mrow></math></span> in Y-direction. We conclude that the proposed simulation environment is a valuable tool for the development of UAV-based condition monitoring systems of solar tower power plants.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"300 ","pages":"Article 113803"},"PeriodicalIF":6.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulation environment for UAV-based real-time condition monitoring of solar tower power plants\",\"authors\":\"Alexander Schnerring ,&nbsp;Rafal Broda ,&nbsp;Adrian Winter ,&nbsp;Michael Nieslony ,&nbsp;Julian J. Krauth ,&nbsp;Marc Röger ,&nbsp;Sonja Kallio ,&nbsp;Robert Pitz-Paal\",\"doi\":\"10.1016/j.solener.2025.113803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development and testing of unmanned aerial vehicle (UAV)-based condition monitoring systems is time consuming, costly and poses safety risks. While numerous examples show that simulation environments are well suited to support the development process, existing environments fall short of simulating quantities specific to the condition monitoring of solar tower power plants. To bridge this gap, we present a simulation environment that provides quantities necessary to investigate such systems in simulation, prior to their application in real solar tower power plants. The presented environment models the state of the solar field and computes observations of the field and reflections of a point light source, as seen from a virtual camera. In addition, it allows for the navigation of a simulated UAV in the virtual solar field in response to realistic UAV control signals. The simulated concentrator corner points were found to match the concentrator corner points determined by a bundle adjustment measurement up to an <span><math><mrow><mtext>RMSE</mtext><mo>=</mo><mn>23</mn><mo>.</mo><mn>7</mn><mspace></mspace><mstyle><mi>m</mi><mi>m</mi></mstyle></mrow></math></span> before and <span><math><mrow><mtext>RMSE</mtext><mo>=</mo><mn>4</mn><mo>.</mo><mn>6</mn><mspace></mspace><mstyle><mi>m</mi><mi>m</mi></mstyle></mrow></math></span> after accounting for translational, rotational and scale errors. The simulated reflections of a point light source were found to match the measured reflections up to an <span><math><mtext>RMSE</mtext></math></span> of <span><math><mrow><mn>2</mn><mo>.</mo><mn>25</mn><mspace></mspace><mstyle><mi>m</mi><mi>r</mi><mi>a</mi><mi>d</mi></mstyle></mrow></math></span> in X-direction and <span><math><mrow><mn>2</mn><mo>.</mo><mn>09</mn><mspace></mspace><mstyle><mi>m</mi><mi>r</mi><mi>a</mi><mi>d</mi></mstyle></mrow></math></span> in Y-direction in the concentrator coordinate system. After eliminating errors in the camera position estimate, concentrator orientations and mirror surface slope errors, the remaining <span><math><mtext>RMSE</mtext></math></span> is <span><math><mrow><mn>0</mn><mo>.</mo><mn>35</mn><mspace></mspace><mstyle><mi>m</mi><mi>r</mi><mi>a</mi><mi>d</mi></mstyle></mrow></math></span> in X-direction and <span><math><mrow><mn>0</mn><mo>.</mo><mn>22</mn><mspace></mspace><mstyle><mi>m</mi><mi>r</mi><mi>a</mi><mi>d</mi></mstyle></mrow></math></span> in Y-direction. We conclude that the proposed simulation environment is a valuable tool for the development of UAV-based condition monitoring systems of solar tower power plants.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"300 \",\"pages\":\"Article 113803\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25005663\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005663","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

基于无人机(UAV)的状态监测系统的开发和测试耗时、昂贵且存在安全风险。虽然许多例子表明仿真环境非常适合支持开发过程,但现有环境不足以模拟太阳能塔式发电厂状态监测的具体数量。为了弥补这一差距,我们提出了一个模拟环境,提供了在模拟中研究此类系统所需的数量,然后再将其应用于实际的太阳能塔式发电厂。所提出的环境模拟了太阳场的状态,并计算了从虚拟摄像机看到的点光源的场和反射的观测值。此外,它允许在虚拟太阳场中模拟无人机的导航,以响应现实的无人机控制信号。模拟的选矿厂角点与通过束调整测量确定的选矿厂角点相匹配,考虑平移、旋转和比例尺误差后,RMSE=23.7mm和RMSE=4.6mm。在聚光器坐标系下,点光源的模拟反射与实测反射相匹配,x方向的RMSE为2.25mrad, y方向的RMSE为2.09mrad。在消除相机位置估计误差、聚光器方向误差和镜面坡度误差后,剩余的x方向RMSE为0.35mrad, y方向RMSE为0.22mrad。我们得出结论,所提出的仿真环境是开发基于无人机的太阳能塔式发电厂状态监测系统的一个有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simulation environment for UAV-based real-time condition monitoring of solar tower power plants
The development and testing of unmanned aerial vehicle (UAV)-based condition monitoring systems is time consuming, costly and poses safety risks. While numerous examples show that simulation environments are well suited to support the development process, existing environments fall short of simulating quantities specific to the condition monitoring of solar tower power plants. To bridge this gap, we present a simulation environment that provides quantities necessary to investigate such systems in simulation, prior to their application in real solar tower power plants. The presented environment models the state of the solar field and computes observations of the field and reflections of a point light source, as seen from a virtual camera. In addition, it allows for the navigation of a simulated UAV in the virtual solar field in response to realistic UAV control signals. The simulated concentrator corner points were found to match the concentrator corner points determined by a bundle adjustment measurement up to an RMSE=23.7mm before and RMSE=4.6mm after accounting for translational, rotational and scale errors. The simulated reflections of a point light source were found to match the measured reflections up to an RMSE of 2.25mrad in X-direction and 2.09mrad in Y-direction in the concentrator coordinate system. After eliminating errors in the camera position estimate, concentrator orientations and mirror surface slope errors, the remaining RMSE is 0.35mrad in X-direction and 0.22mrad in Y-direction. We conclude that the proposed simulation environment is a valuable tool for the development of UAV-based condition monitoring systems of solar tower power plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信