对极端不连通拓扑群的两个观察

IF 0.5 4区 数学 Q3 MATHEMATICS
Yi Zhou , Jialiang He , Hang Zhang , Shuguo Zhang
{"title":"对极端不连通拓扑群的两个观察","authors":"Yi Zhou ,&nbsp;Jialiang He ,&nbsp;Hang Zhang ,&nbsp;Shuguo Zhang","doi":"10.1016/j.topol.2025.109543","DOIUrl":null,"url":null,"abstract":"<div><div>By modifying a method of Malykhin's, we construct two Hausdorff group topologies on the uncountable Boolean group <span><math><mo>(</mo><msup><mrow><mo>[</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow><mrow><mo>&lt;</mo><mi>ω</mi></mrow></msup><mo>,</mo><mo>▵</mo><mo>)</mo></math></span> which are both nondiscrete and extremally disconnected. This is accomplished by working under ZFC plus Jensen's Diamond Principle. The first one has the property that all subgroups of the form <span><math><msup><mrow><mo>[</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∖</mo><mi>α</mi><mo>]</mo></mrow><mrow><mo>&lt;</mo><mi>ω</mi></mrow></msup></math></span> are dense and all countable subsets of <span><math><msup><mrow><mo>[</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow><mrow><mo>&lt;</mo><mi>ω</mi></mrow></msup></math></span> are closed and discrete. This answers a question posed by C.A. Martínez-Ranero and U.A. Ramos-García <span><span>[7, Question 3.4]</span></span>. The second one has the property that some subgroup (endowed with the subspace topology) fails to be extremally disconnected. This answers a question posed by Arhangel'skii and Tkachenko <span><span>[2, Open Problems 4.5.1]</span></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109543"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two observations on extremally disconnected topological groups\",\"authors\":\"Yi Zhou ,&nbsp;Jialiang He ,&nbsp;Hang Zhang ,&nbsp;Shuguo Zhang\",\"doi\":\"10.1016/j.topol.2025.109543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By modifying a method of Malykhin's, we construct two Hausdorff group topologies on the uncountable Boolean group <span><math><mo>(</mo><msup><mrow><mo>[</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow><mrow><mo>&lt;</mo><mi>ω</mi></mrow></msup><mo>,</mo><mo>▵</mo><mo>)</mo></math></span> which are both nondiscrete and extremally disconnected. This is accomplished by working under ZFC plus Jensen's Diamond Principle. The first one has the property that all subgroups of the form <span><math><msup><mrow><mo>[</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∖</mo><mi>α</mi><mo>]</mo></mrow><mrow><mo>&lt;</mo><mi>ω</mi></mrow></msup></math></span> are dense and all countable subsets of <span><math><msup><mrow><mo>[</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow><mrow><mo>&lt;</mo><mi>ω</mi></mrow></msup></math></span> are closed and discrete. This answers a question posed by C.A. Martínez-Ranero and U.A. Ramos-García <span><span>[7, Question 3.4]</span></span>. The second one has the property that some subgroup (endowed with the subspace topology) fails to be extremally disconnected. This answers a question posed by Arhangel'skii and Tkachenko <span><span>[2, Open Problems 4.5.1]</span></span>.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"373 \",\"pages\":\"Article 109543\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125003414\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003414","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过修改Malykhin的方法,我们在不可数布尔群([ω1]<ω,≤)上构造了两个非离散且极度不连通的Hausdorff群拓扑。这是通过在ZFC和Jensen的钻石原理下工作来完成的。第一个具有这样的性质:所有形式为[ω1∈α]<;ω的子群都是稠密的,并且[ω1]<;ω的所有可数子集都是封闭的和离散的。这回答了C.A. Martínez-Ranero和U.A. Ramos-García提出的问题[7,问题3.4]。第二种方法的性质是,某些子群(具有子空间拓扑)不能完全断开连接。这回答了Arhangel'skii和Tkachenko [2, Open Problems 4.5.1]提出的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two observations on extremally disconnected topological groups
By modifying a method of Malykhin's, we construct two Hausdorff group topologies on the uncountable Boolean group ([ω1]<ω,) which are both nondiscrete and extremally disconnected. This is accomplished by working under ZFC plus Jensen's Diamond Principle. The first one has the property that all subgroups of the form [ω1α]<ω are dense and all countable subsets of [ω1]<ω are closed and discrete. This answers a question posed by C.A. Martínez-Ranero and U.A. Ramos-García [7, Question 3.4]. The second one has the property that some subgroup (endowed with the subspace topology) fails to be extremally disconnected. This answers a question posed by Arhangel'skii and Tkachenko [2, Open Problems 4.5.1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信